【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>

(1)(6x-1)2=25;

(2)x2-2x=2x-1;

(3)x2x=2;

(4)x(x-7)=8(7-x).

【答案】(1) x11x2=-;(2) x12,x22;(3)x1,x2

(4) x17,x2=-8.

【解析】試題分析:(1)、兩邊直接開平方得出方程的解;(2)、首先將方程的左邊轉(zhuǎn)化為含有x的項,右邊保留常數(shù)項,然后利用配方法求出方程的解;(3)、首先將方程轉(zhuǎn)化為一般式,然后利用公式法得出方程的解;(4)、首先將方程進行移項,然后利用提取公因式將方程進行因式分解,從而得出方程的解.

試題解析:解:(1)兩邊開平方,得6x1±5,即6x156x1=-5,x11,x2=-

(2)移項,得x24x=-1,配方,得x24x4=-14,即(x2)23,兩邊開平方,得x2±,即x2x2=-,x12,x22

(3)將原方程化為一般形式,得x2x20.b24ac()24×1×(2)10x,x1x2;

(4)移項,得x(x7)8(x7)0,變形,得(x7)(x8)0x70x80,x17x2=-8.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延長線與AD的延長線交于點E.

(1)若∠A=60°,求BC的長;

(2)若sinA=,求AD的長.

(注意:本題中的計算過程和結(jié)果均保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCDAB=AD=2,A=60°BC=,CD=3

1)求∠ADC的度數(shù);

2)求四邊形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+2x軸,y軸分別交于點A(﹣1,0)和點B,與反比例函數(shù)y=的圖象在第一象限內(nèi)交于點C(1,n).

(1)求一次函數(shù)y=kx+2與反比例函數(shù)y=的表達式;

(2)過x軸上的點D(a,0)作平行于y軸的直線l(a>1),分別與直線y=kx+2和雙曲線y=交于P、Q兩點,且PQ=2QD,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n0)的圖象在第二象限交于點C.CDx軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個交點為E,求CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD中,AB4,點E,F在對角線BD上,AECF

1)求證:ABE≌△CDF;

2)若∠ABE2BAE,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC的邊AB,AC的外側(cè)分別作等邊ABD和等邊△ACE,連接DC,BE

1)求證:DCBE;

2)若BD3BC4, BD⊥BC于點B,請求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的布袋中裝有三個小球,小球上分別標有數(shù)字-2、l、2,它們除了數(shù)字不同外,其它都完全相同.

(1)隨機地從布袋中摸出一個小球,則摸出的球為標有數(shù)字l的小球的概率為 .

(2)小紅先從布袋中隨機摸出一個小球,記下數(shù)字作為的值,再把此球放回袋中攪勻,由小亮從布袋中隨機摸出一個小球,記下數(shù)字作為的值,請用樹狀圖或表格列出的所有可能的值,并求出直線不經(jīng)過第四象限的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,E,F分別為線段AC上的兩個動點,且E,F.若,BDAC于點M

1)求證:,.

2)當點E,F移動至圖2所示的位置時,其余條件不變,上述結(jié)論是否成立?如果成立,請直接給出結(jié)論,如果不成立,請說明理由.

查看答案和解析>>

同步練習冊答案