【題目】如圖1,E,F分別為線段AC上的兩個動點(diǎn),且EF.若,BDAC于點(diǎn)M

1)求證:,.

2)當(dāng)點(diǎn)E,F移動至圖2所示的位置時,其余條件不變,上述結(jié)論是否成立?如果成立,請直接給出結(jié)論,如果不成立,請說明理由.

【答案】1)見解析;(2)仍然成立,見解析

【解析】

1)利用HL可證明,可得AF=CE,根據(jù)線段的和差關(guān)系即可得AE=CF,利用AAS可證明DEMBFM,即可得ME=MF;(2)同(1)的證明方法即可得上述結(jié)論依然成立.

1)∵E,F,

中,,

HL),

,即.

BFM中,,

2)仍然成立,,

同(1)可證ABF≌△CDE,BFMDEM

AF=CE,ME=MF

AF+EF=CE+EF,即AE=CF,

∴(1)中結(jié)論依然成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

(1)(6x-1)2=25;

(2)x2-2x=2x-1;

(3)x2x=2;

(4)x(x-7)=8(7-x).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校課外興趣小組在本校學(xué)生中開展感動中國2014年度人物先進(jìn)事跡知曉情況專題調(diào)查活動,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A、B、C、D四類.其中,A類表示非常了解”,B類表示比較了解”,C類表示基本了解”,D類表示不太了解,劃分類別后的數(shù)據(jù)整理如下表:

類別

A

B

C

D

頻數(shù)

30

40

24

b

頻率

a

0.4

0.24

0.06

(1)表中的a=________,b=________;

(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計圖中類別為B的學(xué)生數(shù)所對應(yīng)的扇形圓心角的度數(shù);

(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計該校學(xué)生中類別為C的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,則∠BAE的度數(shù)為何?( 。

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x1x2是一元二次方程2x2﹣7x+5=0的兩根,利用一元二次方程根與系數(shù)的關(guān)系,求下列各式的值

1x12x2+x1x22; (2)(x1x22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

我們已經(jīng)學(xué)習(xí)了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運(yùn)用十字相乘法,請從以下一元二次方程中任選兩個,并選擇你認(rèn)為適當(dāng)?shù)姆椒ń膺@個方程.

①x2-4x-1=0,②x(2x+1)=8x-3,③x2+3x+1=0,④x2-9=4(x-3)

我選擇第幾個方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)教研部門對本區(qū)初二年級的學(xué)生進(jìn)行了一次隨機(jī)抽樣問卷調(diào)查,其中有這樣一個問題:老師在課堂上放手讓學(xué)生提問和表達(dá)( )

A.從不 B.很少 C.有時 D.常常 E.總是

答題的學(xué)生在這五個選項中只能選擇一項.下面是根據(jù)學(xué)生對該問題的答卷情況繪制的兩幅不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)該區(qū)共有 名初二年級的學(xué)生參加了本次問卷調(diào)查;

(2)請把這幅條形統(tǒng)計圖補(bǔ)充完整;

(3)在扇形統(tǒng)計圖中,“總是”的圓心角為 .(精確到度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線x>0),x>0),點(diǎn)P為雙曲線上的一點(diǎn),且PAx軸于點(diǎn)A,PBy軸于點(diǎn)BPA、PB分別交雙曲線D、C兩點(diǎn),則△PCD的面積為( )

A. 1 B. C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名學(xué)生在同一小區(qū)居住,一天早晨,甲、乙兩人同時從家出發(fā)去同一所學(xué)校上學(xué).甲騎自行車勻速行駛.乙步行到公交站恰好乘上一輛公交車,公交車沿公路勻速行駛,公交車的速度分別是甲騎自行車速度和乙步行速度的2倍和5倍,下車后跑步趕到學(xué)校,兩人同時到達(dá)學(xué)校(上、下車時間忽略不計).兩人各自距家的路程y(m)與所用的時間x(min)之間的函數(shù)圖象如圖所示.

(1)a= b=

(2)當(dāng)乙學(xué)生乘公交車時,求yx之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).

(3)如果乙學(xué)生到學(xué)校與甲學(xué)生相差1分鐘,直接寫出他跑步的速度.

查看答案和解析>>

同步練習(xí)冊答案