【題目】為支持國家南水北調工程建設,小王家由原來養(yǎng)殖戶變?yōu)榉N植戶,經市場調查得知,當種植櫻桃的面積x不超過15畝時,每畝可獲得利潤y1900元;超過15畝時,每畝獲得利潤y(元)與種植面積x(畝)之間的函數(shù)關系如下表(為所學過的一次函數(shù),反比例函數(shù)或二次函數(shù)中的一種)

x(畝)

20

25

30

35

y(元)

1800

1700

1600

1500

1)請求出種植櫻桃的面積超過15畝時每畝獲得利潤yx的函數(shù)關系式;

2)如果小王家計劃承包荒山種植櫻桃,受條件限制種植櫻桃面積x不超過50畝,設小王家種植x畝櫻桃所獲得的總利潤為W元,求小王家承包多少畝荒山獲得的總利潤最大,并求總利潤W(元)的最大值.

【答案】1;(2)小王家承包50畝荒山獲得的總利潤最大,總利潤的最大值為60000

【解析】

1)根據(jù)題意設ykxb,利用待定系數(shù)法求解可得;

2)根據(jù)總利潤=每畝利潤×畝數(shù),分0x≤1515x≤50兩種情況,分別利用一次函數(shù)和二次函數(shù)的性質求解可得.

解:(1)由題意,設

,,代入得:,

解得:,

驗證:當時,;當時,,符合題意,

yx的函數(shù)關系式為:

2)由題意得:當時,

此時當時,最大元;

時,,

∵-200,且x≤50,

∴當時,最大元,

綜上,小王家承包50畝荒山獲得的總利潤最大,總利潤的最大值為60000元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明在復習數(shù)學知識時,針對“求一元二次方程的解”,整理了以下的幾種方法,請你將有關內容補充完整.例題:求一元二次方程的兩個解.

1)解法一:選擇合適的一種方法(公式法、配方法、分解因式法)求解.解方程:

2)解法二:利用二次函數(shù)圖象與坐標軸的交點求解,如圖1所示,把方程的解看成是二次函數(shù)y= 的圖象與x軸交點的橫坐標,即x1,x2就是方程的解.

3)解法三:利用兩個函數(shù)圖象的交點求解.

①把方程的解看成是一個二次函數(shù)y= 的圖象與一個一次函數(shù)y= 的圖象交點的橫坐標;

②畫出這兩個函數(shù)的圖象,用x1x2x軸上標出方程的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,⊙OABC的外接圓,AB是直徑,D是⊙O外一點且滿足∠DCA=∠B,連接AD

1)求證:CD是⊙O的切線;

2)若ADCD,AB10,AD8,求AC的長;

3)如圖2,當∠DAB45°時,AD與⊙O交于E點,試寫出AC、EC、BC之間的數(shù)量關系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,∠ADB=∠CDB=∠BAC45°,結論:①∠ABC90°,②ABBC,③AD2+DC22AB2,④AD+DCBD,其中正確的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線yx2+mx+m1的頂點為D,交y軸于C點,交x軸于A(x1,0),B(x2,0)兩點,點Ay軸左邊,點By軸右邊,且AB4

1)求拋物線的解析式;

2)如圖1APAD交拋物線于P.求點P的坐標;

3)如圖2,點HB,D之間拋物線上一點,直線CHBDE,交x軸于F,若SCDESBEF,求H點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)的圖象交于二、四象限內的A、B兩點,與x軸交于C點,點A的坐標為(﹣2,3),點B的坐標為(4,n).

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)在x軸上是否存在點P,使△APC是直角三角形?若存,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1中, ,點從點出發(fā)以的速度沿折線運動,點從點出發(fā)以的速度沿運動,兩點同時出發(fā),當某一點運動到點時,兩點同時停止運動.設運動時間為的面積為),關于的函數(shù)圖象由兩段組成,如圖2所示,有下列結論:①;②:③圖象段的函數(shù)表達式為;④面積的最大值為8,其中正確的個數(shù)有( )個

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店在兩周內,將標價為10/斤的某種水果,經過兩次降價后的價格為8.1/斤,并且兩次降價的百分率相同.

1)求該種水果每次降價的百分率;

2)從第一次降價的第1天算起,第天(為整數(shù))的售價、銷量及儲存和損耗費用的相關信息如表所示.

時間(天)

售價(元/斤)

1次降價后的價格

2次降價后的價格

銷量(斤)

儲存和損耗費用(元)

已知該種水果的進價為4.1/斤,設銷售該水果第(天)的利潤為(元),求)之間的函數(shù)解析式,并求出第幾天時銷售利潤最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產A、B兩種產品共50件,已知生產一件A種產品用甲種原料9千克,乙種原料3千克,可獲利700元;生產一件B種產品用甲種原料4千克,乙種原料10千克,可獲利1200元.

(1)按要求安排A、B兩種產品的生產件數(shù),有哪幾種方案?請你設計出來;

(2)設生產A、B兩種產品總利潤為y元,其中一種產品生產件數(shù)為x件,試寫出y與x之間的函數(shù)關系式,并利用函數(shù)的性質說明那種方案獲利最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案