扇形OAB的半徑OA=1,圓心角∠AOB=90°,點C是弧AB上的動點,連結AC和BC,記弦AC,CB與弧AC、CB圍成的陰影部分的面積為S,則S的最小值為(  )

A.        B.    C.        D.

 

【答案】

B.

【解析】

試題分析:如圖,連接AB, 要使陰影部分的面積最小,就需要滿足四邊形AOBC的面積最大,只需滿足△ABC的面積最大即可,從而可得當點C位于弧AB的中點時,△ABC的面積最大.

的中點C',連接OC',OC'與AB相交于點D,

則OC'⊥AB,AB=,OD=AB=,,

.

∴S的最小值為=.

故選B.

考點:1.動點問題;2. 等腰直角三角形的性質;3.勾股定理;4.垂徑定理;5.扇形和三角形面積;6.轉換思想的應用.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,扇形OAB的半徑OA=r,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于精英家教網(wǎng)點D,作CE⊥OB于點E,點M在DE上,DM=2EM,過點C的直線PC交OA的延長線于點P,且∠CPD=∠CDE.
(1)求證:DM=
2
3
r;
(2)求證:直線PC是扇形OAB所在圓的切線;
(3)設y=CD2+3CM2,當∠CPO=60°時,請求出y關于r的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連接DE,點G、H在線段DE上,且DG=GH=HE
(1)求證:四邊形OGCH是平行四邊形;
(2)當點C在
AB
上運動時,在CD、CG、DG中,是否存在長度不變的線段?若存在,請求出該線段的長度;
(3)求證:CD2+3CH2是定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連接DE,點G、H在線段DE上,且DG=GH=HE
(1)求證:四邊形OGCH是平行四邊形.
(2)當點C在
AB
上運動時,在CD、CG、DG中,是否存在長度不變的線段?若存在,請求出該線段的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,扇形OAB的半徑OA=6,圓心角∠AOB=90°,C是
AB
上不同于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連接DE,點H在線段DE上,且EH=
2
3
DE.設EC的長為x,△CEH的面積為y,選項中表示y與x的函數(shù)關系式的圖象可能是( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,扇形OAB的半徑OA=r,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,點M在DE上,DM=2EM,過點C的直線CP交OA的延長線于點P,且∠CPO=∠CDE.
(1)試說明:DM=
2
3
r;
(2)試說明:直線CP是扇形OAB所在圓的切線.

查看答案和解析>>

同步練習冊答案