【題目】已知一個(gè)學(xué)生從點(diǎn)A向北偏東60°方向走40米,到達(dá)點(diǎn)B,再從B沿北偏西30°方向走若干米,到達(dá)點(diǎn)C,此時(shí)恰好在點(diǎn)A的正北方向,則下列說法正確的是( 。

A. 點(diǎn)ABC的距離為30

B. 點(diǎn)B在點(diǎn)C的南偏東60°方向

C. 點(diǎn)A在點(diǎn)B的南偏西60°方向30米處

D. 以上都不對

【答案】D

【解析】

根據(jù)方向是相互的,可得AB、C的相對方向,根據(jù)AB、BC的距離,可得答案.

A、點(diǎn)ABC的距離是AB=40米,故A錯(cuò)誤;

B、點(diǎn)B在點(diǎn)C的男偏東30°方向30米,故B錯(cuò)誤;

C、點(diǎn)A在點(diǎn)B的南偏西60°方向40米處,故C錯(cuò)誤;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)xOy中,已知點(diǎn)A(6,0),點(diǎn)B(0,6),動點(diǎn)C在以半徑為3的⊙O上,連接OC,過O點(diǎn)作OD⊥OC,OD與⊙O相交于點(diǎn)D(其中點(diǎn)C、O、D按逆時(shí)針方向排列),連接AB.

(1)當(dāng)OC∥AB時(shí),∠BOC的度數(shù)為 ;

(2)連接AC,BC,在點(diǎn)C在⊙O運(yùn)動過程中,△ABC的面積是否存在最大值?并求出△ABC的最大值;

(3)直接寫出在(2)的條件下D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,點(diǎn)D,E,F(xiàn)分別在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.

(1)如圖1,當(dāng)DE=DF時(shí),圖1中是否存在與AB相等的線段?若存在,請找出,并加以證明;若不存在,說明理由;

(2)如圖2,當(dāng)DE=kDF(其中0<k<1)時(shí),若∠A=90°,AF=m,求BD的長(用含k,m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形OABC中,AB∥OC,BC⊥x軸于C,A(1,-1),B(3,-1),動點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以2個(gè)單位/秒的速度運(yùn)動.過P作PQ⊥OA于Q.設(shè)P點(diǎn)運(yùn)動的時(shí)間為t秒(0 < t < 2),ΔOPQ與四邊形OABC重疊的面積為S.

(1)求經(jīng)過O、A、B三點(diǎn)的拋物線的解析式并確定頂點(diǎn)M的坐標(biāo);

2)用含t的代數(shù)式表示PQ兩點(diǎn)的坐標(biāo);
3)將ΔOPQP點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,是否存在t,使得ΔOPQ的頂點(diǎn)OQ落在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由;

(4)求S與t的函數(shù)解析式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項(xiàng)式3a2b﹣a3﹣1+ab2按a的升冪排列是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD、EF相交于點(diǎn)O,OG平分∠COF,∠1=30°,∠2=45°.求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項(xiàng)式2x2bxc分解因式為2(x3)(x1),則b,c的值為(  )

A. b3,c=-1 B. b=-6,c2

C. b=-6c=-4 D. b=-4,c=-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,EG∥AF,請你從下面三個(gè)條件中,再選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論,推出一個(gè)正確的命題.并證明這個(gè)命題(只寫出一種情況)①AB=AC ②DE=DF ③BE=CF
已知:EG∥AF,
求證:
證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一組數(shù)據(jù)x1 , x2 , …,xn的方差是4,則另一組數(shù)據(jù)x1+3,x2+3,…,xn+3的方差是( 。
A.4
B.7
C.8
D.19

查看答案和解析>>

同步練習(xí)冊答案