【題目】如圖,在RtABC中,B=90°,BC=5C=30°.D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(t0.過點DDFBC于點F,連接DE、EF.

1)求證:AE=DF

2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.

3)當t為何值時,DEF為直角三角形?請說明理由.

【答案】1)證明見解析;(2)能,;(34時,DEF為直角三角形.

【解析】

中,,,根據(jù)30°角直角三角形的性質(zhì)及已知條件即可證得結(jié)論;

先證得四邊形AEFD為平行四邊形,使AEFD為菱形則需要滿足的條件為AE=AD,由此即可解答;

時,四邊形EBFD為矩形Rt△AED中求可得,由此即可解答;時,由,則得,求得,由此列方程求解即可;時,此種情況不存在.

中,,,,

,

能,

,

,

四邊形AEFD為平行四邊形.

,

若使AEFD為菱形,則需,

即當時,四邊形AEFD為菱形.

時,四邊形EBFD為矩形.

中,,

,

時,由四邊形AEFD為平行四邊形知,

,

時,此種情況不存在.

綜上所述,當秒或4秒時,為直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的頂點A是等邊EFGFG的中點,∠B=60°EF=2,則陰影部分的面積為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將正面分別標有數(shù)字2,3,4的三張形狀、大小一樣的卡片洗勻后,背面朝上放在桌面上.

(1)隨機地抽取一張卡片求抽到奇數(shù)的概率;

(2)隨機地抽取一張卡片,將卡片上標有的數(shù)字作為十位上的數(shù)字(不放回),再隨機地抽取一張卡片,將卡片上標有的數(shù)字作為個位上的數(shù)字,組成的兩位數(shù)恰好是“23”的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,在正方形中,是對角線上任意一點,過,作,若正方形的周長為,則四邊形的周長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某武警部隊在一次地震搶險救災行動中探險隊員在相距4米的水平地面A,B兩處均探測出建筑物下方C處有生命跡象已知在A處測得探測線與地面的夾角為30°,B處測得探測線與地面的夾角為60°,求該生命跡象C處與地面的距離.(結(jié)果精確到0.1參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,所有小正方形的邊長都為1個單位,A、B、C均在格點上.

過點C畫線段AB的平行線CD;

過點A畫線段BC的垂線,垂足為E

過點A畫線段AB的垂線,交線段CB的延長線于點F;

線段AE的長度是點______到直線______的距離;

線段AE、BFAF的大小關系是______連接

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,過點A作AE⊥CD,AE分別與CD、CB相交于點H、E,AH=2CH.

(1)求sinB的值;

(2)如果CD=,求BE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正五邊形ABCDEMCD的中點,連接AC,BE,AM.

求證:(1)ACBE

(2)AMCD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(﹣5+(﹣4)﹣(+6)﹣(﹣7).

2|81|÷2÷(﹣16).

3

4)﹣22

查看答案和解析>>

同步練習冊答案