【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,過點A作AE⊥CD,AE分別與CD、CB相交于點H、E,AH=2CH.
(1)求sinB的值;
(2)如果CD=,求BE的值.
【答案】(1);(2)3.
【解析】
試題(1)根據(jù)∠ACB=90°,CD是斜邊AB上的中線,可得出CD=BD,則∠B=∠BCD,再由AE⊥CD,可證明∠B=∠CAH,由AH=2CH,可得出CH:AC=1:,即可得出sinB的值;
(2)根據(jù)sinB的值,可得出AC:AB=1:,再由AB=,得AC=2,則CE=1,從而得出BE.
試題解析:(1)∵∠ACB=90°,CD是斜邊AB上的中線,
∴CD=BD,
∴∠B=∠BCD,
∵AE⊥CD,
∴∠CAH+∠ACH=90°,
又∠ACB=90°,
∴∠BCD+∠ACH=90°,
∴∠B=∠BCD=∠CAH,即∠B=∠CAH,
∵AH=2CH,
∴由勾股定理得AC=CH,
∴CH:AC=1:,
∴sinB=;
(2)∵sinB=,
∴AC:AB=1:,
∴AC=2.
∵∠CAH=∠B,
∴sin∠CAH=sinB==,
設(shè)CE=x(x>0),則AE=x,則,
∴CE=x=1,AC=2,
在Rt△ABC中,,
∵AB=2CD=,
∴BC=4,
∴BE=BC﹣CE=3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】營養(yǎng)對促進中學(xué)生機體健康具有重要意義.現(xiàn)對一份學(xué)生快餐進行檢測,得到以下信息:
根據(jù)上述信息回答下面的問題:
(1)這份快餐中蛋白質(zhì)和脂肪的質(zhì)量共 克;
(2)分別求出這份快餐中脂肪、礦物質(zhì)的質(zhì)量;
(3)學(xué)生每餐膳食中主要營養(yǎng)成分“理想比”為:碳水化合物:脂肪:蛋白質(zhì)=8:1:9,同時三者含量為總質(zhì)量的90%.試判斷這份快餐中此三種成分所占百分比是否符合“理想比”?如果符合,直接寫出這份快餐中碳水化合物、脂肪、蛋白質(zhì)、礦物質(zhì)的質(zhì)量比;如果不符合,求出符合“理想比”的四種成分中脂肪、礦物質(zhì)的質(zhì)量(總質(zhì)量仍為300克).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當(dāng)△PMN周長取最小值時,則∠MPN的度數(shù)為( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當(dāng)其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某涌泉蜜桔長方體包裝盒的展開圖.具體數(shù)據(jù)如圖所示,且長方體盒子的長是寬的2倍.
(1)展開圖的6個面分別標(biāo)有如圖所示的序號,若將展開圖重新圍成一個包裝盒,則相對的面分別是 與 , 與 , 與 ;
(2)若設(shè)長方體的寬為xcm,則長方體的長為 cm,高為 cm;(用含x的式子表示)
(3)求這種長方體包裝盒的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,AC垂直平分BD,交BD于點F,延長DC到點E,使得CE=DC,連接BE.
(1)求證:四邊形ABCD是菱形.
(2)填空:
①當(dāng)∠ADC= °時,四邊形ACEB為菱形;
②當(dāng)∠ADC=90°,BE=4時,則DE=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有一張寬為12 cm的練習(xí)紙,相鄰兩條格線間的距離均為0.6 cm.調(diào)皮的小聰在紙的左上角用印章印出一個矩形卡通圖案,圖案的頂點恰好在四條格線上,已知sinα=.
(1)求一個矩形卡通圖案的面積;
(2)若小聰在第一個圖案的右邊以同樣的方式繼續(xù)蓋印,最多能印幾個完整的圖案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點P,下列說法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正確的個數(shù)有( )個。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=10cm,AC=BD=6cm.∠CAB=∠DBA,點P在線段AB上以2cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).設(shè)點Q的運動速度為xcm/s,若使得△ACP與△BPQ全等,則x的值為 ______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com