【題目】如圖,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分線,且交AD于P,如果AP=2,則AC的長為( )
A. 2 B. 4 C. 6 D. 8
【答案】C
【解析】
易得△AEP的等邊三角形,則AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性質來求EB的長度,然后在等腰△BEC中得到CE的長度,則易求AC的長度.
解:∵△ABC中,∠BAC=90°,∠C=30°,
∴∠ABC=60°.
又∵BE是∠ABC的平分線,
∴∠EBC=30°,
∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,
∴∠AEP=60°,BE=EC.
又AD⊥BC,
∴∠CAD=∠EAP=60°,
則∠AEP=∠EAP=60°,
∴△AEP的等邊三角形,則AE=AP=2,
在直角△AEB中,∠ABE=30°,則EB=2AE=4,
∴BE=EC=4,
∴AC=CE+AE=6.
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點C,BD平分∠ABF,且交AE于點D,AC與BD相交于點O,連接CD
(1)求∠AOD的度數;
(2)求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我鎮(zhèn)綠色和特色農產品在市場上頗具競爭力.外貿商胡經理按市場價格10元/千克在我區(qū)收購了6000千克蘑菇存放入冷庫中.請根據胡經理提供的預測信息(如圖)幫胡經理解決以下問題:
(1)若胡經理想將這批蘑菇存放x天后一次性出售, 則x天后這批蘑菇的銷售單價為元, 這批蘑菇的銷售量是千克;
(2)胡經理將這批蘑菇存放多少天后,一次性出售所得的銷售總金額為100000元;(銷售總金額=銷售單價×銷售量).
(3)將這批蘑菇存放多少天后一次性出售可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于二次函數y=x2-3x+2和一次函數y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)稱為這兩個函數的“再生二次函數”,其中t是不為零的實數,其圖象記作拋物線E.
現(xiàn)有點A(2,0)和拋物線E上的點B(-1,n),請完成下列任務:
(1)【嘗試】
①當t=2時,拋物線E的頂點坐標是.
②點A拋物線E上;(填“在”或“不在”),
③n=.
(2)【發(fā)現(xiàn)】通過②和③的演算可知,對于t取任何不為零的實數,拋物線E總過定點,這個定點的坐標是.
(3)【應用1】二次函數y=-3x2+5x+2是二次函數y=x2-3x+2和一次函數y=-2x+4的一個“再生二次函數”嗎?如果是,求出t的值;如果不是,說明理由.
(4)【應用2】以AB為一邊作矩形ABCD,使得其中一個頂點落在y軸上,若拋物線E經過點A、B、C,求出所有符合條件的t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】◆探索發(fā)現(xiàn):如圖是一種網紅彈弓的實物圖,在兩頭上系上皮筋,拉動皮筋可形成平面示意圖如圖1、圖2,彈弓的兩邊可看成是平行的,即.各活動小組探索與,之間的數量關系.已知,點不在直線和直線上.在圖1中,智慧小組發(fā)現(xiàn):;
智慧小組是這樣思考的:過點作,……
請你按照智慧小組作的輔助線補全推理過程.
◆類比思考:①在圖2中,與,之間的數量關系為________.
②如圖3,已知,則角、、之間的數量關系為________.
◆解決問題:善思小組提出:如圖4,圖5.,,分別平分,.
①在圖4中,與之間的關系為________.
②在圖5中,與之間的關系為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c的頂點為M(﹣2,﹣4),與x軸交于A、B兩點,且A(﹣6,0),與y軸交于點C.
(1)求拋物線的函數解析式;
(2)求△ABC的面積;
(3)能否在拋物線第三象限的圖象上找到一點P,使△APC的面積最大?若能,請求出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:點D是△ABC所在平面內一點,連接AD、CD.
(1)如圖1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;
(2)如圖2,若存在一點P,使得PB平分∠ABC,同時PD平分∠ADC,探究∠A,∠P,∠C的關系并證明;
(3)如圖3,在 (2)的條件下,將點D移至∠ABC的外部,其它條件不變,探究∠A,∠P,∠C的關系并證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com