【題目】如圖,已知內(nèi)接于的直徑,,交的延長(zhǎng)線于點(diǎn)

(1)的中點(diǎn),連結(jié),求證:的切線.

(2),求的大。

【答案】(1)證明見(jiàn)解析(2)30°

【解析】

(1)想要證明CE是⊙O的切線,證明∠OCE=90°即可,連接半徑OC,根據(jù)同圓的半徑相等和直角三角形斜邊中線等于斜邊一半可得:∠EBC+OBC=ECB+OCB,則∠OCE=OBE=90°,可得結(jié)論;

(2)設(shè)CD=m,則AC=3m,證明ACB∽△BCD,列比例式可得:BC=m,利用三角函數(shù)定義可得結(jié)論.

(1)連接OC,

的直徑,

∴∠ACB=DCB=90°,

的中點(diǎn),

BE=CE,

∴∠EBC=ECB,

OC=OB,

∴∠OCB=OBC,

∴∠ECB+OCB=EBC+OBC,

,

∴∠OCE=OBE=90°,

的切線.

(2)設(shè)CD=m,AC=3m,

∵△ACB≌△BCD,

,

,

=30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,,結(jié)論:①;②;③;④,其中正確的是有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BAD=90°,點(diǎn)EBC的延長(zhǎng)線上,且∠DEC=BAC.

(1)求證:DE是⊙O的切線;

(2)若ACDE,當(dāng)AB=8,CE=2時(shí),求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)y=(x0)與正比例函數(shù)y=x(x0)的圖象,點(diǎn)A(14),點(diǎn)A'(4b)與點(diǎn)B'均在反比例函數(shù)的圖象上,點(diǎn)B在直線y=x上,四邊形AA'B'B是平行四邊形,則B點(diǎn)的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是二次函數(shù)yax2+bx+ca0)圖象的一部分,直線x=﹣1是對(duì)稱軸,有下列判斷:①b2a0,②4a2b+c0,③ab+c=﹣9a,④若(﹣3,y1),(,y2)是拋物線上的兩點(diǎn),則y1y2.其中正確的是( 。

A. ①②③B. ①③C. ①④D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】怡然美食店的AB兩種菜品,每份成本均為14元,售價(jià)分別為20元、18元,這兩種菜品每天的營(yíng)業(yè)額共為1120元,總利潤(rùn)為280元.

1)該店每天賣出這兩種菜品共多少份?

2)該店為了增加利潤(rùn),準(zhǔn)備降低A種菜品的售價(jià),同時(shí)提高B種菜品的售價(jià),售賣時(shí)發(fā)現(xiàn),A種菜品售價(jià)每降0.5元可多賣1份;B種菜品售價(jià)每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤(rùn)最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣冬季流感嚴(yán)重,學(xué)生感染較多,造成不少學(xué)校放假,為了預(yù)防流感,縣教體局要求各校進(jìn)行防控.某學(xué)校計(jì)劃利用周末將教室及公共環(huán)境進(jìn)行噴藥消毒,現(xiàn)有甲、乙兩位老師主動(dòng)承接該工作,若甲、乙兩老師合作6小時(shí)可以完成全部工作;若甲老師單獨(dú)做4小時(shí)后,剩下的乙老師單獨(dú)做還需9小時(shí)完成.求甲、乙兩老師單獨(dú)完成該工作各需多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx-3的對(duì)稱軸為直線x=1,交x軸于A,B兩點(diǎn),交y軸于C點(diǎn),其中B點(diǎn)的坐標(biāo)為(3,0).

(1)直接寫出A點(diǎn)的坐標(biāo);

(2)求二次函數(shù)y=ax2+bx-3的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是弧AD的中點(diǎn),弦CEAB于點(diǎn)F,過(guò)點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CF、BC于點(diǎn)P、Q,連接AC.給出下列結(jié)論:①∠BAD=ABC;GP=GD;③點(diǎn)PACQ的外心;④APAD=CQCB.其中正確的是( 。

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案