【題目】在直角坐標(biāo)系內(nèi),設(shè)A(0,0),B(4,0),C(t+4,4),D(t,4)(t為實(shí)數(shù)),記N為平行四邊形ABCD內(nèi)部(不含邊界)的整點(diǎn)的個數(shù),其中整點(diǎn)是指橫、縱坐標(biāo)都是整數(shù)的點(diǎn),則N的值可能為_____.
【答案】9或11或12
【解析】
作出平行四邊形,結(jié)合圖象得到平行四邊形中的整數(shù)點(diǎn)的個數(shù).
解:當(dāng)t=0時,平行四邊形ABCD內(nèi)部的整點(diǎn)有:
(1,1);(1,2);(1,3);(2,1);(2,2);(2,3)(3,1);(3,2);(3,3)共9個點(diǎn),
所以N(0)=9,此時平行四邊形ABCD是矩形,
當(dāng)平行四邊形ABCD是一般平行四邊形時,
將邊AD,BC變動起來,結(jié)合圖象得到N(t)的所有可能取值為11,12.
綜上所述:N的值可能為:9或11或12.
故答案是:9或11或12.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x分別與雙曲線y=(m>0,x>0),雙曲線y=(n>0,x>0)交于點(diǎn)A和點(diǎn)B,且,將直線y=x向左平移6個單位長度后,與雙曲線y= 交于點(diǎn)C,若S△ABC=4,則的值為_____,mn的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《如果想毀掉一個孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開展了“手機(jī)伴我健康行”主題活動,他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時間”的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計(jì)圖,已知“查資料”的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對應(yīng)的百分比為______,圓心角度數(shù)是______度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2100人,估計(jì)每周使用手機(jī)時間在2 小時以上(不含2小時)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC邊于點(diǎn)D,E是邊BC的中點(diǎn),連接DE、OD,
(1)求證:直線DE是⊙O的切線;
(2)連接OC交DE于F,若OF=FC,試判斷△ABC的形狀,并說明理由;
(3)若,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)P是AB延長線上一點(diǎn),連接CP.
(1)如圖1,若∠PCB=∠A.
①求證:直線PC是⊙O的切線;
②若CP=CA,OA=2,求CP的長;
(2)如圖2,若點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,MNMC=9,求BM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時,y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時,雙翼邊緣的端點(diǎn)A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時,可以通過閘機(jī)的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com