【題目】如圖,在平面直角坐標(biāo)系中,拋物線y1=(x-2)2+1y2=x2-4x+c,過點(diǎn)A(1,-3)作直線ly,交拋物線y2于點(diǎn)B,交拋物線y1 點(diǎn)C,則以下結(jié)論

(1)拋物線y1y軸的交點(diǎn)坐標(biāo)為(0,1)

(2)若點(diǎn)D(-4,m及點(diǎn)E(7,n均在拋物線y1mn;

(3)若點(diǎn)B在點(diǎn)A的上方c>0;(4)BC=2,c=3 其中結(jié)論正確的是 ( )

A. (1)(2) B. (2)(3) C. (3)(4) D. (1)(4)

【答案】B

【解析】:(1x=0,y1=(0-2)2+1=5,∴拋物線y1y軸的交點(diǎn)坐標(biāo)為(0,5),故(1)錯誤;

(2)當(dāng)x=-4,y1=(-4-2)2+1=37,∴m=37,當(dāng)x=7,y1=(7-2)2+1=26,∴n=26,∴mn,故(2)正確;

(3)當(dāng)x=1y2=12-4+c=-3+c.∵點(diǎn)B在點(diǎn)A的上方,∴-3+c>-3,解得c>0.故(3)正確;

(4)令x=1,y1=(1-2)2+1=2,∴BC=|-3+c -2|=2,解得c=3c=7.故(4)錯誤

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:若關(guān)于x的一元一次方程ax=b的解為b+a,則稱該方程為“和解方程”. 例如:方程2x=﹣4的解為x=﹣2,而﹣2=﹣4+2,則方程2x=﹣4為“和解方程”.

請根據(jù)上述規(guī)定解答下列問題:

(1)已知關(guān)于x的一元一次方程3x=m是“和解方程”,求m的值;

(2)已知關(guān)于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上有A、B、C、D、O五個點(diǎn)點(diǎn)O為原點(diǎn),點(diǎn)C在數(shù)軸上表示的數(shù)是5,線段CD的長度為4個單位線段AB的長度為2個單位,B、C兩點(diǎn)之間的距離為11個單位請解答下列問題

1點(diǎn)D在數(shù)軸上表示的數(shù)是 ,點(diǎn)A在數(shù)軸上表示的數(shù)是 ;

2若點(diǎn)B以每秒2個單位的速度向右勻速運(yùn)動t秒運(yùn)動到線段CDBC的長度是3個單位,根據(jù)題意列出的方程是 ,解得t= ;

3若線段ABCD同時從原來的位置出發(fā),線段AB以每秒2個單位的速度向右勻速運(yùn)動線段CD以每秒3個單位的速度向左勻速運(yùn)動,把線段CD的中點(diǎn)記作P,請直接寫出,點(diǎn)P與線段AB的一個端點(diǎn)的距離為1.5個單位時運(yùn)動的時間

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為30m的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆(平行于AB)的矩形花圃設(shè)花圃的一邊AB為xm,面積為ym2

(1)求y與x的函數(shù)關(guān)系式;

(2)如果要圍成面積為63m2的花圃,AB的長是多少?

(3)能圍成比63m2更大的花圃嗎?如果能,請求出最大面積;如果不能,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前,我市城市居民用電收費(fèi)方式有以下兩種:

普通電價付費(fèi)方式:全天0. 52元/度;

峰谷電價付費(fèi)方式:峰時(早8:00~晚21:00)0. 65元/度;谷時(晚21:00~早8:00)0. 40元/度.

(1)小麗老師家10月份總用電量為280度.

①若其中峰時電量為80度,則小麗老師家按照哪種方式付電費(fèi)比較合適?能省多少元?

②若小麗老師交費(fèi)137元,那么,小麗老師家峰時電量為多少度?

(2)到11月份付費(fèi)時,小麗老師發(fā)現(xiàn)11月份總用電量為320度,用峰谷電價付費(fèi)方式比普通電價付費(fèi)方式省了18. 4元,那么,11月份小麗老師家峰時電量為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下證明過程:

已知:在△ABC中,∠C≠90°,設(shè)AB=c,AC=bBC=a.求證:a2+b2c2

證明:假設(shè)a2+b2=c2,則由勾股定理逆定理可知∠C=90°,這與已知中的∠C≠90°矛盾,故假設(shè)不成立,所以a2+b2c2

請用類似的方法證明以下問題:

已知:關(guān)于x的一元二次方程x2﹣(m+1)x+2m-3=0 有兩個實(shí)根x1x2

求證:x1x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,點(diǎn)C(3,8),E、FAB、CD邊上的中點(diǎn),如圖1,點(diǎn)A在原點(diǎn)處,點(diǎn)By軸正半軸上,點(diǎn)C在第一象限,若點(diǎn)A從原點(diǎn)出發(fā),沿x軸向右以每秒1個單位長度的速度運(yùn)動,點(diǎn)B隨之沿y軸下滑,并帶動矩形ABCD在平面內(nèi)滑動,如圖2,設(shè)運(yùn)動時間表示為t秒,當(dāng)點(diǎn)B到達(dá)原點(diǎn)時停止運(yùn)動.

(1)當(dāng)t=0時,點(diǎn)F的坐標(biāo)為 ;

(2)當(dāng)t=4時,求OE的長及點(diǎn)B下滑的距離;

(3)求運(yùn)動過程中,點(diǎn)F到點(diǎn)O的最大距離;

(4)當(dāng)以點(diǎn)F為圓心,FA為半徑的圓與坐標(biāo)軸相切時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因課外閱讀需要,學(xué)校圖書館向出版商郵購某系列圖書,每本書單價為20元,郵購總費(fèi)用包括書的價錢和郵費(fèi).相關(guān)的書價折扣、郵費(fèi)如下表所示.

數(shù)量

折扣

郵費(fèi)(元/次)

不超過10

九折

6

超過10

八折

實(shí)際總書價的10%

1)若一次郵購8本,共需總費(fèi)用為 .

若一次郵購12本,共需總費(fèi)用為 .

2)已知圖書館需購書的總數(shù)是10的整數(shù)倍,且超過10本.

①若分次郵購、分別匯款,每次郵購10本,總費(fèi)用為930元時,共郵購了多少本書?

②如果圖書館需購書的總數(shù)為60本,若你是圖書館負(fù)責(zé)人,從節(jié)約的角度出發(fā),在每次郵購10一次性郵購這兩種方式中你會選擇哪一種?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,B=90°,CAB=30°,它的頂點(diǎn)A的坐標(biāo)為(100),頂點(diǎn)B的坐標(biāo)為(5,5),AB=10,點(diǎn)P從點(diǎn)A出發(fā),沿ABC的方向勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)D0,2)出發(fā),沿y軸正方向以相同速度運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時,兩點(diǎn)同時停止運(yùn)動,設(shè)運(yùn)動的時間為t秒.

1)當(dāng)點(diǎn)PAB上運(yùn)動時,OPQ的面積S(平方單位)與時間t(秒)之間的函數(shù)圖象為拋物線的一部分,(如圖),則點(diǎn)P的運(yùn)動速度為 ;

2)求(1)中面積S與時間t之間的函數(shù)關(guān)系式及面積S的最大值及S取最大值時點(diǎn)P的坐標(biāo);

3)如果點(diǎn)P,Q保持(1)中的速度不變,那么點(diǎn)P沿AB邊運(yùn)動時,OPQ的大小隨著時間t的增大而增大;沿著BC邊運(yùn)動時,OPQ的大小隨著時間t的增大而減小,當(dāng)點(diǎn)P沿這兩邊運(yùn)動時,使OPQ=90°的點(diǎn)P 個.

查看答案和解析>>

同步練習(xí)冊答案