【題目】解方程組和不等式
(1)解方程組
(2)解不等式5x+15>4x+13并在數(shù)軸上表示它的解集.
【答案】
(1)解:
①+②得:4x=12,
解得:x=3,
把x=3代入①得:3+2y=1,
解得:y=﹣1,
所以原方程組的解為:
(2)解:5x+15>4x+13,
5x﹣4x>13﹣15,
x>﹣2,在數(shù)軸上表示為:
【解析】(1)①+②得出4x=12,求出x,把x的值代入①求出y即可;(2)移項(xiàng),合并同類項(xiàng),求出不等式的解集,最后在數(shù)軸上表示出來即可.
【考點(diǎn)精析】利用解二元一次方程組和不等式的解集在數(shù)軸上的表示對(duì)題目進(jìn)行判斷即可得到答案,需要熟知二元一次方程組:①代入消元法;②加減消元法;不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫數(shù)軸②定界點(diǎn)③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實(shí)心圓點(diǎn),不等于用空心圓圈.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀發(fā)現(xiàn):(1)如圖①,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,連結(jié)CD,AE.易證:△BCD≌△BAE.(不需要證明)
提出問題:(2)在(1)的條件下,當(dāng)BD∥AE時(shí),延長(zhǎng)CD交AE于點(diǎn)F,如圖②,求AF的長(zhǎng).
解決問題:(3)如圖③,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,連結(jié)CD,AE.當(dāng)∠BAE=45°時(shí),點(diǎn)E到AB的距離EF的長(zhǎng)為2,求線段CD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將二次函數(shù)y=(x﹣2)2+3的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,所得二次函數(shù)的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一些不重疊的多邊形把平面的一部分完全覆蓋叫做平面鑲嵌.則用一種多邊形鑲嵌時(shí),下列多邊形中不能進(jìn)行平面鑲嵌的是( )
A. 三角形 B. 正方形 C. 正五邊形 D. 正六邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一根彈簧原長(zhǎng)12 cm,它所掛的重量不超過10 kg,并且掛重1 kg就伸長(zhǎng)1.5 cm,寫出掛重后彈簧長(zhǎng)度y(cm)與掛重x(kg)之間的函數(shù)關(guān)系式是( )
A. y=1.5(x+12)(0≤x≤10) B. y=1.5x+12(0≤x≤10)
C. y=1.5x+12(x≥0) D. y=1.5(x-12)(0≤x≤10)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知點(diǎn)D在線段AB的反向延長(zhǎng)線上,過AC的中點(diǎn)F作線段GE交∠DAC的平分線于E,交BC于G,且AE∥BC.
(1)求證:△ABC是等腰三角形;
(2)若AE=8,AB=10,GC=2BG,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人沿同一路線登山,圖中線段OC、折線OAB分別是甲、乙兩人登山的路程y(米)與登山時(shí)間x(分)之間的函數(shù)圖象.請(qǐng)根據(jù)圖象所提供的信息,解答如下問題:
(1)求甲登山的路程與登山時(shí)間之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求乙出發(fā)后多長(zhǎng)時(shí)間追上甲?此時(shí)乙所走的路程是多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com