【題目】如圖,已知的直徑,、的切線,、為切點(diǎn),于點(diǎn),的延長(zhǎng)線交于點(diǎn),連接.給出以下結(jié)論:①;③點(diǎn)的內(nèi)心.其中正確的是________(填序號(hào)).

【答案】①③

【解析】

根據(jù)圓的切線長(zhǎng)定理、垂線定理,三角形內(nèi)心判別方法

連接ODCD、CB為⊙O切線,根據(jù)切線長(zhǎng)定理,CDCB

OD、OB為⊙O半徑,∴ODOB;又∵CO為公共邊,∴可證ODCOBC

∴∠DOCBOC,可證ODGOBGOCBD;

AB為直徑,∴ADBD,ADBD,即①正確;

僅當(dāng)時(shí),有FCEF;∴②不可選;

CD是⊙O的切線,∴∠CDEDOE,

又∵∠BDEBOE,∴∠CDEBDE,即DE是∠CDB的角平分線,、

同理可證BE是∠CBD的平分線,因此ECBD的內(nèi)心,故③正確;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知ABC中, BAC=90°, AB=AC, AE是過A的一條直線, 且B、C在AE的異側(cè), BDAE于D, CEAE于E.

(1)求證: BD=DE+CE.

(2)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖位置時(shí)(BD<CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請(qǐng)給予證明;

(3)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖位置時(shí)(BD>CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請(qǐng)直接寫出結(jié)果, 不需證明.

(4)根據(jù)以上的討論,請(qǐng)用簡(jiǎn)潔的語言表達(dá)BD與DE,CE的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次出數(shù)的圖象與軸交于點(diǎn)、,與軸的正半軸的交點(diǎn)在的下方,則,②,③,④,其中正確的個(gè)數(shù)為(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線與直線交于A,B兩點(diǎn)(點(diǎn)A在第三象限),將雙曲線在第一象限的一支沿射線BA的方向平移,使其經(jīng)過點(diǎn)A,將雙曲線在第三象限的一支沿射線AB的方向平移,使其經(jīng)過點(diǎn)B,平移后的兩條曲線相交于P,Q兩點(diǎn),此時(shí)我們稱平移后的兩條曲線所圍部分(如圖中陰影部分)為雙曲線的,PQ為雙曲線的眸徑,當(dāng)雙曲線的眸徑為9時(shí),的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第二十四屆冬季奧林匹克運(yùn)動(dòng)會(huì)將與2022220日在北京舉行,北京將成為歷史上第一座舉辦過夏奧會(huì)又舉辦過冬奧會(huì)的城市,東寶區(qū)舉辦了一次冬奧會(huì)知識(shí)網(wǎng)上答題競(jìng)賽,甲、乙兩校各有400名學(xué)生參加活動(dòng),為了解這兩所學(xué)校的成績(jī)情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)補(bǔ)充完整.

(收集數(shù)據(jù))

從甲、乙兩校各隨機(jī)抽取20名學(xué)生,在這次競(jìng)賽中它們的成績(jī)?nèi)缦拢?/span>

30

60

60

70

60

80

30

90

100

60

60

100

80

60

70

60

60

90

60

60

80

90

40

60

80

80

90

40

80

50

80

70

70

70

70

60

80

50

80

80

(整理、描述數(shù)據(jù))按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

(說明:優(yōu)秀成績(jī)?yōu)?/span>80<x≤100,良好成績(jī)?yōu)?/span>50<x≤80,合格成績(jī)?yōu)?/span>30≤x≤50.)

學(xué)校

平均分

中位數(shù)

眾數(shù)

67

60

60

70

75

a

30≤x≤50

50<x≤80

80<x≤100

2

14

4

4

14

2

(分析數(shù)據(jù))兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如右表所示:其中a=  

(得出結(jié)論)

(1)小偉同學(xué)說:這次競(jìng)賽我得了70分,在我們學(xué)校排名屬中游略偏上!由表中數(shù)據(jù)可知小明是  校的學(xué)生;(填”)

(2)老師從乙校隨機(jī)抽取一名學(xué)生的競(jìng)賽成績(jī),試估計(jì)這名學(xué)生的競(jìng)賽成績(jī)?yōu)閮?yōu)秀的概率為  ;

(3)根據(jù)以上數(shù)據(jù)推斷一所你認(rèn)為競(jìng)賽成績(jī)較好的學(xué)校,并說明理由.(至少?gòu)膬蓚(gè)不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明為校合唱隊(duì)購(gòu)買某種服裝時(shí),商店經(jīng)理給出了如下優(yōu)惠條件:如果一次性購(gòu)買不超過件,單價(jià)為元;如果一次性購(gòu)買多于件,那么每增加件,購(gòu)買的所有服裝的單價(jià)降低元,但單價(jià)不得低于元.按此優(yōu)惠條件,小明一次性購(gòu)買這種服裝為正整數(shù))件,支付元.

當(dāng)時(shí),小明購(gòu)買的這種服裝的單價(jià)為________元;

寫出關(guān)于的函數(shù)表達(dá)式,并給出自變量的取值范圍;

小明一次性購(gòu)買這種服裝付了元,請(qǐng)問他購(gòu)買了多少件這種服裝?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAEBAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=-x4的圖象與x軸和y軸分別交于點(diǎn)AB,再將AOB沿直線CD對(duì)折,使點(diǎn)A與點(diǎn)B重合、直線CDx軸交于點(diǎn)C,與AB交于點(diǎn)D

(1)點(diǎn)A的坐標(biāo)為_________,點(diǎn)B的坐標(biāo)為_________

(2)在直線AB上是否存在點(diǎn)P使得△APO的面積為12?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)OC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)均為 1.格點(diǎn)三角形 ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn) A、C 的坐標(biāo)分別是(﹣2,0),(﹣3,3).

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系,寫出點(diǎn) B 的坐標(biāo);

(2)把△ABC 繞坐標(biāo)原點(diǎn) O 順時(shí)針旋轉(zhuǎn) 90°得到△A1B1C1,畫出△A1B1C1,寫出點(diǎn)

B1的坐標(biāo);

(3)以坐標(biāo)原點(diǎn) O 為位似中心,相似比為 2,把△A1B1C1 放大為原來的 2 倍,得到△A2B2C2 畫出△A2B2C2,使它與△AB1C1 在位似中心的同側(cè);

請(qǐng)?jiān)?x 軸上求作一點(diǎn) P,使△PBB1 的周長(zhǎng)最小,并寫出點(diǎn) P 的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案