【題目】綜合實踐
如圖①,,垂足分別為點,.
(1)求的長;
(2)將所在直線旋轉(zhuǎn)到的外部,如圖②,猜想之間的數(shù)量關(guān)系,直接寫出結(jié)論,不需證明;
(3)如圖③,將圖①中的條件改為:在中,三點在同一直線上,并且,其中為任意鈍角.猜想之間的數(shù)量關(guān)系,并證明你的結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形紙片中,,,.將該紙片沿過點的直線折疊,使點落在斜邊上的一點處,折痕記為(如圖1),剪去后得到雙層(如圖2),再沿著邊某頂點的直線將雙層三角形剪開,使得展開后的平面圖形中有一個是平行四邊形.則所得平行四邊形的周長為__________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標(biāo)是(3,0),點C的坐標(biāo)是(0,-3),動點P在拋物線上.
(1)b =_________,c =_________,點B的坐標(biāo)為_____________;(直接填寫結(jié)果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.
(1)求證:直線CE是⊙O的切線.
(2)若BC=3,CD=3,求弦AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點.
(1)試說明△OBC是等腰三角形;
(2)連接OA,試判斷直線OA與線段BC的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)S是數(shù)據(jù),……,的標(biāo)準(zhǔn)差,Sˊ是……,的標(biāo)準(zhǔn)差,則有( )
A.S= SˊB.Sˊ=S-5C.Sˊ=(S-5)2D.Sˊ=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于拋物線y=x2﹣4x+3.
(1)它與x軸交點的坐標(biāo)為 ,與y軸交點的坐標(biāo)為 ,頂點坐標(biāo)為 .
(2)在坐標(biāo)系中利用描點法畫出此拋物線;
x | … |
|
|
|
|
| … |
y | … |
|
|
|
|
| … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),下列結(jié)論正確的是( )
A.圖象必經(jīng)過點B.圖象經(jīng)過第一、二、三象限
C.隨的增大而增大D.直線與兩坐標(biāo)軸所圍成的三角形面積為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com