【題目】如圖,在中,,為斜邊上的中點,連接,以為直徑作⊙,分別與交于點、.過點,垂足為點.

1)求證:為⊙的切線;

2)連接,若,,求的長.

【答案】(1)見解析(2)5

【解析】

1)欲證明NE為⊙O的切線,只要證明ONNE

2)想辦法證明四邊形DMCN是矩形即可解決問題.

1)連接ON

∵∠ACB=90°,D為斜邊的中點,∴CD=DA=DBAB,∴∠BCD=B

OC=ON,∴∠BCD=ONC,∴∠ONC=B,∴ONAB

NEAB,∴ONNE,∴NE為⊙O的切線.

2)由(1)得到:∠BCD=B,∴sinBCD=sinB

NE=3,∴BN=5

連接DN

CD是⊙O的直徑,∴∠CND=90°,∴DNBC,∴CN=BN=5,易證四邊形DMCN是矩形,∴MD=CN=BN=5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,PCD邊上一點(DPCP),DP=1,AD=2,APB=90°.將ADP沿AP翻折得到ADP,PD的延長線交邊AB于點M,過點BBNMPDC于點N

1)求線段PC之長;

2)求線段PN之長;

3)如圖2,連接AC,分別交PM,PB于點EF.求線段EF之長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)(1)如圖1,在ABC中,點D,EQ分別在AB,AC,BC上,且DEBCAQDE于點P.求證:.

2如圖,在ABC中,BAC=90°,正方形DEFG的四個頂點在ABC的邊上,連接AG,AF分別交DEM,N兩點.

如圖2,若AB=AC=1,直接寫出MN的長;

如圖3,求證MN2=DM·EN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨若移動終端設的升級換代,手機已經(jīng)成為我們生活中不可缺少的一部分,為了解中學生在假期使用手機的情況(選項:A .和同學親友聊天;B.學習;C.購物;D.游戲;E.其它),端午節(jié)后某中學在全校范圍內隨機抽取了若干名學生進行調査,得到如下圖表(部分信息未給出:

根據(jù)以上信息解答下列問題:

(1)這次被調查的學生有多少人?

(2)求表中 的值,并補全條形統(tǒng)計圖;

(3)若該中學約有名學生,估計全校學生中利用手機購物或玩游戲的共有多少人?

并根據(jù)以上調査結果,就中學生如何合理使用手機給出你的一條建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績如下表(10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;

(2)計算乙隊的平均成績和方差;

(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,對角線AC、BD相交于點OBD2AD,EF、G分別是OCOD、AB的中點,下列結論:①BEAC;②EGEF;EFG≌△GBE;④EA平分∠GEF四邊形BEFG是菱形.其中正確的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當y>0時,﹣1<x<3,其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,正方形ABCD,BM、DN分別是正方形的兩個外角平分線,∠MAN45°,將∠MAN繞著正方形的頂點A旋轉,邊AM、AN分別交兩條角平分線于點M、N,聯(lián)結MN

1)求證:△ABM∽△NDA;

2)聯(lián)結BD,當∠BAM的度數(shù)為多少時,四邊形BMND為矩形,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線,其中,直線l是它的對稱軸,把該拋物線沿著x軸水平向左平移個單位長度后,與x軸交于點A、BB的左側,如圖1P為平移后的拋物線上位于第一象限內的一點

A的坐標為______;

若點P的橫坐標為,求出當m為何值時的面積最大,并求出這個最大值;

如圖2,APl于點D,當DAP的中點時,求證:

查看答案和解析>>

同步練習冊答案