【題目】如圖,在四邊形ABCD中,∠A=∠BCD=90°,BC=DC,延長(zhǎng)AD到E,使DE=AB.

(1)求證:∠ABC=∠EDC;

(2)求證:△ABC≌△EDC.

【答案】(1)證明見解析;(2)證明見解析.

【解析】試題分析:(1)根據(jù)四邊形的內(nèi)角和等于360°求出∠B+∠ADC=180°,再根據(jù)鄰補(bǔ)角的和等于180°可得∠CDE+∠ADE=180°,從而求出∠B=∠CDE;

2)根據(jù)邊角邊證明即可.

試題解析:(1)在四邊形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,

∴∠B+∠ADC=180°,又∵∠CDE+∠ADE=180°,∴∠ABC=∠CDE,

2)連接AC,由(1)證得∠ABC=∠CDE,在△ABC△EDC,

∴△ABC≌△EDCSAS).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(列二元一次方程組解應(yīng)用題)某公司共有3個(gè)一樣規(guī)模的大餐廳和2個(gè)一樣規(guī)模的小餐廳,經(jīng)過測(cè)試同時(shí)開放2個(gè)大餐廳和1個(gè)小餐廳,可供300名員工就餐;同時(shí)開放1個(gè)大餐廳,1個(gè)小餐廳,可供170名員工就餐.

(1)請(qǐng)問1個(gè)大餐廳、1個(gè)小餐廳分別可供多少名員工就餐;

(2)如果3個(gè)大餐廳和2個(gè)小餐廳全部開放,那么能否供全體450名員工就餐?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個(gè)長(zhǎng)為 ,寬為 的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后用四塊小長(zhǎng)方形拼成的一個(gè)回形正方形(如圖2).

1)圖2中的陰影部分的面積為 ;

2)觀察圖2請(qǐng)你寫出 ,, 之間的等量關(guān)系是 ;

3)根據(jù)(2)中的結(jié)論,若 ,,則

4)實(shí)際上我們可以用圖形的面積表示許多恒等式,下面請(qǐng)你設(shè)計(jì)一個(gè)幾何圖形來表示恒等式.在圖形上把每一部分的面積標(biāo)寫清楚.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點(diǎn)B作射線BB1∥AC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng).過點(diǎn)D作DH⊥AB于H,過點(diǎn)E作EF⊥AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)t為何值時(shí),AD=AB,并求出此時(shí)DE的長(zhǎng)度;
(2)當(dāng)△DEG與△ACB相似時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)課上,李老師讓同學(xué)們獨(dú)立完成課本第23頁第七題選擇題(2)如圖 1,如果 ABCDEF,那么∠BAC+ACE+CEF=(

A.180° B.270° C.360° D.540°

1)請(qǐng)寫出這道題的正確選項(xiàng);

2)在同學(xué)們都正確解答這道題后,李老師對(duì)這道題進(jìn)行了改編:如圖2ABEF,請(qǐng)直接寫出∠BAD,∠ADE,∠DEF之間的數(shù)量關(guān)系.

3)善于思考的龍洋同學(xué)想:將圖1平移至與圖2重合(如圖3所示),當(dāng)AD,ED分別平分∠BAC,∠CEF時(shí),∠ACE與∠ADE之間有怎樣的數(shù)量關(guān)系?請(qǐng)你直接寫出結(jié)果,不需要證明.

4)彭敏同學(xué)又提出來了,如果像圖4這樣,ABEF,當(dāng)∠ACD=90°時(shí),∠BAC、∠CDE和∠DEF之間又有怎樣的數(shù)量關(guān)系?請(qǐng)你直接寫出結(jié)果,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BAD和BCE均為等腰直角三角形,BAD=BCE=90°,點(diǎn)M為DE的中點(diǎn),過點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.

(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:M為AN的中點(diǎn);

(2)將圖1中的BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:ACN為等腰直角三角形;

(3)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時(shí),(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P(1,0).點(diǎn)P第1次向上跳動(dòng)1個(gè)單位至點(diǎn)P1(1,1),緊接著第2次向左跳動(dòng)2個(gè)單位至點(diǎn)P2(-1,1),第3次向上跳動(dòng)1個(gè)單位至點(diǎn)P3,第4次向右跳動(dòng)3個(gè)單位至點(diǎn)P4,第5次又向上跳動(dòng)1個(gè)單位至點(diǎn)P5,第6次向左跳動(dòng)4個(gè)單位至點(diǎn)P6,…….照此規(guī)律,點(diǎn)P第100次跳動(dòng)至點(diǎn)P100的坐標(biāo)是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將平行四邊形ABCD折疊,使頂點(diǎn)D恰落在AB邊上的點(diǎn)M處,折痕為AN,那么下列說法不正確的是(  )

A. MNBCB. MNAMC. ANBCD. BMCN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),與y軸相交于(0, ),點(diǎn)A坐標(biāo)為(-1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)C在x軸的正半軸上.

(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)F為線段AC上一動(dòng)點(diǎn),過點(diǎn)F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為點(diǎn)E,G,當(dāng)四邊形OEFG為正方形時(shí),求出點(diǎn)F的坐標(biāo);
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)平移的距離為t,正方形的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案