【題目】如圖1是一個長為 ,寬為 的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個回形正方形(如圖2).

1)圖2中的陰影部分的面積為 ;

2)觀察圖2請你寫出 ,, 之間的等量關(guān)系是 ;

3)根據(jù)(2)中的結(jié)論,若 ,,則 ;

4)實際上我們可以用圖形的面積表示許多恒等式,下面請你設(shè)計一個幾何圖形來表示恒等式.在圖形上把每一部分的面積標(biāo)寫清楚.

【答案】1;(2;(3)±5;(4)詳見解析

【解析】

1)表示出陰影部分正方形的邊長,然后根據(jù)正方形的面積公式列式即可;

2)根據(jù)大正方形的面積減去小正方形的面積等于四個小長方形的面積列式即可;

3)將(x-y2變形為(x+y2—4xy,再代入求值即可;

4)由已知的恒等式,畫出相應(yīng)的圖形,如圖所示.

解:(1)陰影部分為一個正方形,其邊長為b-a

∴其面積為:,

故答案為:;

2)大正方形面積為:

小正方形面積為:=

四周四個長方形的面積為:,

故答案為:;

3)由(2)知,,

=,

故答案為:±5;

4)符合等式的圖形如圖所示,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形AB1C1D1的邊長為1,∠B1=60°;作AD2⊥B1C1于點D2 , 以AD2為一邊,做第二個菱形AB2C2D2 , 使∠B2=60°;作AD3⊥B2C2于點D3 , 以AD3為一邊做第三個菱形AB3C3D3 , 使∠B3=60°…依此類推,這樣做的第n個菱形ABnCnDn的邊ADn的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,解決下列問題:

材料一:對非負(fù)實數(shù)x“四舍五入到個位的值記為,即:當(dāng)n為非負(fù)整數(shù)時,如果,則;反之,當(dāng)n為非負(fù)整數(shù)時,如果;則,例如:,,

材料二:平面直角坐標(biāo)系中任意兩點,我們把叫做、兩點間的折線距離,并規(guī)定是一定點,是直線上的一動點,我們把的最小值叫做到直線的折線距離,例如:若

如果,寫出實數(shù)x的取值范圍;已知點,點,且,求a的值.

m為滿足的最大值,求點到直線的折線距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=﹣x+8x軸、y軸分別交于點A和點B,MOB上的一點,若將ABM沿AM折疊,點B恰好落在x軸上的點B′處,則直線AM的函數(shù)解析式是( 。

A. y=﹣x+8 B. y=﹣x+8 C. y=﹣x+3 D. y=﹣x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初三年級的一場籃球比賽中,如圖隊員甲正在投籃,已知球出手時離地面高 m,與籃圈中心的水平距離為7m,當(dāng)球出手后水平距離為4m時到達(dá)最大高度4m,設(shè)籃球運行的軌跡為拋物線,籃圈距地面3m.

(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式并判斷此球能否準(zhǔn)確投中?
(2)此時,若對方隊員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB和∠COD的兩邊分別互相垂直,且∠COD比∠AOB3倍少60°,則∠COD的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠BCD=90°,BC=DC,延長AD到E,使DE=AB.

(1)求證:∠ABC=∠EDC;

(2)求證:△ABC≌△EDC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空,完成下列說理過程

如圖,點AO,B在同一條直線上, OD,OE分別平分∠AOC和∠BOC

1)求∠DOE的度數(shù);

2)如果∠COD=65°,求∠AOE的度數(shù).

解:(1)如圖,因為OD是∠AOC的平分線,

所以∠COD =AOC

因為OE是∠BOC 的平分線,

所以 =BOC

所以∠DOE=COD+ =(∠AOC+BOC=AOB= °

2)由(1)可知∠BOE=COE = -∠COD= °.

所以∠AOE= -∠BOE = °

查看答案和解析>>

同步練習(xí)冊答案