【題目】已知:如圖,在△ABC中,AB=AC,∠A=36°.
(1)尺規(guī)作圖:作AB的垂直平分線MN交AC于點D,連接BD;(保留作圖痕跡,不寫作法)
(2)求∠DBC的度數(shù)。
【答案】(1)答案見解析;(2)36°
【解析】
(1)分別以A、B點為圓心,以大于AB的長為半徑作弧,兩弧相交于M,N兩點;作直線MN,即MN為線段AB的垂直平分線;
(2)由AB的垂直平分線MN交AC于D,根據(jù)線段垂直平分線的性質(zhì),即可求得AD=BD,又由∠A=36°,根據(jù)等邊對等角的性質(zhì),即可求得∠ABD的度數(shù),又由AB=AC,即可求得∠ABC的度數(shù),繼而求得∠DBC的度數(shù).
解:(1)如圖:
(2)解:∵AB的垂直平分線MN交AC于D,
∴AD=BD,
∵∠A=36°,
∴∠ABD=∠A=36°,
∵AB=AC,
∴∠ABC=∠C=(180°-∠A)=72°,
∴∠DBC=∠ABC-∠ABD=72°-36°=36°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,以直線x=對稱軸的拋物線y=ax2+bx+c與直線l:y=kx+m(k>0)交于A(1,1),B兩點,與y軸交于C(0,5),直線l與y軸交于點D.
(1)求拋物線的函數(shù)表達式;
(2)設(shè)直線l與拋物線的對稱軸的交點為F,G是拋物線上位于對稱軸右側(cè)的一點,若,且△BCG與△BCD面積相等,求點G的坐標;
(3)若在x軸上有且僅有一點P,使∠APB=90°,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,D,E分別在AB,AC上,AD=AE,將△ADE繞點A逆時針任意旋轉(zhuǎn).
(1)發(fā)現(xiàn):如圖2,連結(jié)BD,CE,若∠BAC=60°,D點恰在線段BE上,則∠BEC= °;
(2)探究:如圖3,連結(jié)BD,CE,并交于點F,求證:∠BFC=∠BAC;
(3)拓展:如圖4,若∠BAC=90°,AB=5,AD=2,連結(jié)CD,BE,請直接寫出四邊形BCDE的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,□ABCD的對角線交于點O,點E在邊BC的延長線上,且OE=OB,連接DE.
(1)求證:△BDE是直角三角形;
(2)如果OE⊥CD,試判斷△BDE與△DCE是否相似,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(5,0)和點B(0,4).
(1)求直線AB所對應的函數(shù)表達式;
(2)設(shè)直線y=x與直線AB相交于點C,求△BOC的面積;
(3)若將直線OC沿x軸向右平移,交y軸于點O′,當△AB O′為等腰三角形時,直接寫出點O′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=kx2+2kx﹣3k(k≠0),的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且OC=OA.
(1)點A坐標為 ,點B坐標為 ,拋物線的解析式為 ;
(2)若點P是第二象限內(nèi)拋物線上的一個動點,連接AP、CP,當四邊形ABCP的面積最大時,求點P的坐標;
(3)若點Q(0,m)是y軸上的動點,連接AQ、BQ,
①當∠AQB是鈍角時,求m的取值范圍;
②當∠AQB=60°時,則m= .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一枚均勻的正方體骰子,六個面分別標有數(shù)字:1,2,3,4,5,6.如果用小剛拋擲正方體骰子朝上的數(shù)字x,小強拋擲正方體骰子朝上的數(shù)字y來確定點P(x,y),那么他們各拋擲一次所確定的點P落在已知直線y=﹣2x+7圖象上的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,己知,A(0, 4),B (t,0)分別在y軸,x軸上,連接AB,以AB為直角邊分別作等腰Rt△ABD和等腰Rt△ABC.直線BC交y軸于點E. 點G(-2,3)、H(-2,1)在第二象限內(nèi).
(1)當t =-3時,求點D的坐標.
(2)若點G、H位于直線AB的異側(cè),確定t的取值范圍.
(3)①當t取何值時,△ABE與△ACE的面積相等.
②在①的條件下,在x軸上是否存在點P,使△PCB為等腰三角形?若存在,請直接寫出點P的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com