【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間,則下列結論:①4a﹣2b+c>0;②3a+b>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有兩個互異實根.其中正確結論的個數(shù)是( 。
A.1個B.2個C.3個D.4個
【答案】B
【解析】
根據(jù)二次函數(shù)圖象和性質,開口向下,可得a<0,對稱軸x=1,利用頂點坐標,圖象與x軸的交點情況,對照選項逐一分析即可.
①∵拋物線與x軸的一個交點在點(3,0)和(4,0)之間,而拋物線的對稱軸為直線x=1,
∴拋物線與x軸的另一個交點在點(﹣2,0)和(﹣1,0)之間,
∴當x=﹣2時,y<0,
即4a﹣2b+c<0,所以①不符合題意;
②∵拋物線的對稱軸為直線x=﹣=1,即b=﹣2a,
∴3a+b=3a﹣2a=a<0,所以②不符合題意;
③∵拋物線的頂點坐標為(1,n),
∴=n,
∴b2=4ac﹣4an=4a(c﹣n),所以③符合題意;
④∵拋物線與直線y=n有一個公共點,
∴拋物線與直線y=n﹣1有2個公共點,
∴一元二次方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根,所以④符合題意.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】某工廠計劃生產一種創(chuàng)新產品,若生產一件這種產品需A種原料1.2千克、B種原料1千克.已知A種原料每千克的價格比B種原料每千克的價格多10元.
(1)為使每件產品的成本價不超過34元,那么購入的B種原料每千克的價格最高不超過多少元?
(2)將這種產品投放市場批發(fā)銷售一段時間后,為拓展銷路又開展了零售業(yè)務,每件產品的零售價比批發(fā)價多30元.現(xiàn)用10000元通過批發(fā)價購買該產品的件數(shù)與用16000元通過零售價購買該產品的件數(shù)相同,那么這種產品的批發(fā)價是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x-2與反比例函數(shù)y=的圖象相交于點A(2, n) ,與x軸相交于點B.
(1)求k 的值以及點 B 的坐標;
(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求點D的坐標;
(3)在y軸上是否存在點P,使PA+PB的值最?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x-2與反比例函數(shù)y=的圖象相交于點A(2, n) ,與x軸相交于點B.
(1)求k 的值以及點 B 的坐標;
(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求點D的坐標;
(3)在y軸上是否存在點P,使PA+PB的值最。咳舸嬖,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)與一次函數(shù)的圖象相交于點A、點D,且點A的橫坐標為1,點D的縱坐標為-1,過點A作AB⊥x軸于點B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若一次函數(shù)y=ax+b的圖像與x軸交于點C,求∠ACO的度數(shù).
(3)結合圖像直接寫出,當時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某初級中學數(shù)學興趣小組為了了解本校學生的年齡情況,隨機抽取了該校部分學生的年齡作為樣本,經(jīng)過數(shù)據(jù)整理,繪制出如下不完整的統(tǒng)計圖.依據(jù)相關信息解答以下問題:
(1)寫出樣本容量 ,并補全條形統(tǒng)計圖;
(2)寫出樣本的眾數(shù) 歲,中位數(shù) 歲;
(3)若該校一共有600名學生.估計該校學生年齡在15歲及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究:
如圖1,拋物線與軸交于兩點(點在點的左側),頂點為,為對稱軸右側拋物線的一個動點,直線與軸于點,過點作,交軸于點.
(1)求直線的函數(shù)表達式及點的坐標;
(2)如圖2,當軸時,將以每秒1個單位長度的速度沿軸的正方向平移,當點與點重合時停止平移.設平移秒時,在平移過程中與四邊形重疊部分的面積為,求關于的函數(shù)關系式,并寫出自變量的取值范圍;
(3)如圖3,過點作軸的平行線,交直線于點,直線與交于點,設點的橫坐標為.
①當時,求的值;
②試探究點在運動過程中,是否存在值,使四邊形是菱形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com