如圖,P為∠AOB內(nèi)一點,, 分別是P關于OA、OB的對稱點,交OA于M,交OB于 N,若=8㎝,則△PMN的周長是(  )㎝
A. 7         B.  5       C.  8        D.  1 0
C
解:∵OA和OB分別是△PMP1和△PNP2的對稱軸,
∴PM=MP1,PN=NP2;
∴P1M+MN+NP2=PM+MN+PN=P1P2=8cm,
∴△PMN的周長為8cm.
故選C.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

問題情境:如圖①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點D,可知:∠BAD=∠C(不需要證明);
特例探究:如圖②,∠MAN=90°,射線AE在這個角的內(nèi)部,點B、C在∠MAN的邊AM、AN上,且AB="AC," CF⊥AE于點F,BD⊥AE于點D.證明:△ABD≌△CAF;
歸納證明:如圖③,點BC在∠MAN的邊AM、AN上,點EF在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB="AC," ∠1=∠2=∠BAC.求證:△ABE≌△CAF;
拓展應用:如圖④,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為            .(12分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點D是△ABC的邊BC延長線上的一點,∠A=70°,∠ACD=105°,則∠B=(   )
A.55°B.65°C.45°D.35°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,

(1)△BCE≌△CAD的依據(jù)是                   (填字母);
(2)猜想:AD、DE、BE的數(shù)量關系為                  (不需證明);
(3)當BE繞點B、AD繞點A旋轉到圖2位置時,線段AD、DE、BE之間又有怎樣的數(shù)量關系,并證明你的結論。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知,如圖:∠ABC=∠DEF,AB=DE,要說明ΔABC≌ΔDEF

(1) 若以“SAS”為依據(jù),還要添加的條件為______________;
(2) 若以“ASA”為依據(jù),還要添加的條件為______________;
(3) 若以“AAS”為依據(jù),還要添加的條件為______________;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

三個半圓的面積分別為S1=4.5π,S2=8π,S3=12.5π,把三個半圓拼成如圖所示的圖形,則△ABC一定是直角三角形嗎?說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

我們知道等腰三角形是軸對稱圖形.對于等腰三角形對稱軸的問題,芳芳、明明、園園三位同學有不同的看法.
芳芳:“我認為等腰三角形的對稱軸是頂角平分線所在的直線.”
明明:“我認為等腰三角形的對稱軸是底邊中線所在的直線.”
園園:“我認為等腰三角形的對稱軸是底邊高線所在的直線.”
你認為她們誰說的對呢?     ;請說明你的理由:     .                              

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

有一塊田地的形狀和尺寸如圖所示,則它的面積為    。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

等腰三角形一腰上的高與另一腰的夾角為500,則底角的度數(shù)為              

查看答案和解析>>

同步練習冊答案