如圖是一個幾何體的三視圖,則這個幾何體的側(cè)面積是
A cm2 B. cm2 C. 6cm2 D.3cm2
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線y=kx+b與y軸交于點(0,3)、與x軸交于點(a,0),當(dāng)a滿足﹣3≤a<0時,k的取值范圍是( 。
| A. | ﹣1≤k<0 | B. | 1≤k≤3 | C. | k≥1 | D. | k≥3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1所示,已知拋物線y=﹣x2+4x+5的頂點為D,與x軸交于A、B兩點,與y軸交于C點,E為對稱軸上的一點,連接CE,將線段CE繞點E按逆時針方向旋轉(zhuǎn)90°后,點C的對應(yīng)點C′恰好落在y軸上.
(1)直接寫出D點和E點的坐標(biāo);
(2)點F為直線C′E與已知拋物線的一個交點,點H是拋物線上C與F之間的一個動點,若過點H作直線HG與y軸平行,且與直線C′E交于點G,設(shè)點H的橫坐標(biāo)為m(0<m<4),那么當(dāng)m為何值時,S△HGF:S△BGF=5:6?
(3)圖2所示的拋物線是由y=﹣x2+4x+5向右平移1個單位后得到的,點T(5,y)在拋物線上,點P是拋物線上O與T之間的任意一點,在線段OT上是否存在一點Q,使△PQT是等腰直角三角形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠ABC= 90°,以AB為直徑的⊙O與AC邊交與點D.過D作⊙O的切線交BC與點E.連接OE.
(1)證明:OE∥AC;
(2)①當(dāng)∠BAC= °時,四邊形ODEB是正方形;
②當(dāng)∠BAC= °時,AD=3DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線a與直線b交于點A,與直線c交于點B,∠1=120°,∠2=45°,若使直線b與直線c平行,則可將直線b繞點A逆時針旋轉(zhuǎn)_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某校計劃開設(shè)4門選修課:音樂、繪畫、體育、舞蹈,學(xué)校采取隨機抽樣的方法進行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門),對調(diào)查結(jié)果進行統(tǒng)計后,繪制了如下不完整的兩個統(tǒng)計圖.
根據(jù)以上統(tǒng)計圖提供的信息,回答下列問題:
(1)此次調(diào)查抽取的學(xué)生人數(shù)為a=____人,其中選擇“繪畫”的學(xué)生人數(shù)占抽樣人數(shù)的百分比為b=____;
(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中“舞蹈”所對應(yīng)的圓心角的度數(shù);
(3)若該校有2000名學(xué)生,請估計全校選擇“繪畫”的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,點 A(5,0),B(3,2),點C在線段OA上,BC=BA,點Q是線段BC上一個動點,點P的坐標(biāo)是(0,3),直線PQ的解析式為y=kx+b(k≠0),且與x軸交于點D.
(1)求點C的坐標(biāo)及b的值;
(2)求k的取值范圍;
(3)當(dāng)k為取值范圍內(nèi)的最大整數(shù)時,過點B作BE∥x軸,交PQ于點E,若拋物線y=ax2﹣5ax(a≠0)的頂點在四邊形ABED的內(nèi)部,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com