【題目】如圖,是上的兩個(gè)定點(diǎn),為優(yōu)弧上的動(dòng)點(diǎn),過點(diǎn)作交射線于點(diǎn),過點(diǎn)作,點(diǎn)在上,且.
(1)求證:與相切;
(2)已知:
①若,求的長;
②當(dāng)兩點(diǎn)間的距離最短時(shí),判斷四點(diǎn)所組成的四邊形的形狀,并說明理由.
【答案】(1)詳見解析;(2)①;②四邊形是平行四邊形,理由詳見解析
【解析】
(1)如圖1,作直徑BG,連接GE,證∠EBD=∠G,則∠EBD+∠GBE=90°,即可推出結(jié)論;
(2)①如圖2,連接AG,證△BCD∽△BAG,推出,在Rt△BGE中,求出BG的長,可進(jìn)一步求出BD的長;
②由①推出,因?yàn)?/span>B,E為定點(diǎn),BE為定值,所以BD為定值,D為定點(diǎn),因?yàn)椤?/span>BCD=90°,所以點(diǎn)C在以BD為直徑的⊙M上運(yùn)動(dòng),當(dāng)點(diǎn)C在線段OM上時(shí),OC最小,證,∠OMB=60°,依次推出AB∥CD,AC∥BD即可.
(1)如圖1,作直徑BG,連接GE,
則∠GEB=90°,
∴∠G+∠GBE=90°,
∵∠A=∠EBD,∠A=∠G,
∴∠EBD=∠G,
∴∠EBD+∠GBE=90°,
∴∠GBD=90°,
∴BD⊥OB,
∴BD與⊙O相切;
(2)①如圖2,連接AG,
∵BC⊥AB,
∴∠ABC=90°,
由(1)知∠GBD=90°,
∴∠GBD=∠ABC,
∴∠GBA=∠CBD,
又∵∠GAB=∠DCB=90°,
∴△BCD∽△BAG,
∴
又中,,
∴
∴
②四邊形是平行四邊形.理由如下:
由①知,
∴
∵為定點(diǎn),為定值
∴為定值,為定點(diǎn)
∴點(diǎn)在為直徑的上運(yùn)動(dòng),
∴當(dāng)點(diǎn)在線段上時(shí),最小
此時(shí)在中,
∴
∴
∴
,
∴
∴
∴
∴
∴
∴四邊形為平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若二次購進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天府新區(qū)某校數(shù)學(xué)活動(dòng)小組在一次活動(dòng)中,對一個(gè)數(shù)學(xué)問題作如下探究:
(1)問題發(fā)現(xiàn):如圖1,在等邊△ABC中,點(diǎn)P是邊BC上任意一點(diǎn),連接AP,以AP為邊作等邊△APQ,連接CQ.求證:BP CQ;
(2)變式探究:如圖2,在等腰△ABC中,ABBC,點(diǎn)P是邊BC上任意一點(diǎn),以AP為腰作等腰△APQ,使AP PQ,APQ ABC,連接CQ.判斷∠ABC和∠ACQ的數(shù)量關(guān)系,并說明理由;
(3)解決問題:如圖3,在正方形ADBC中,點(diǎn)P是邊BC上一點(diǎn),以AP為邊作正方形 APEF,Q是正方形APEF的中心,連接CQ.若正方形APEF的邊長為6,,求正方形ADBC的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線交軸于點(diǎn),點(diǎn)為軸上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),在直線上取一點(diǎn)(點(diǎn)在軸上方),使,連結(jié),以為邊在的右側(cè)作正方形,連結(jié),以為直徑作.
(1)當(dāng)點(diǎn)在點(diǎn)左側(cè)時(shí),若點(diǎn)落在軸上,則的長為______,點(diǎn)的坐標(biāo)為_______;
(2)若與正方形的邊相切于點(diǎn),求點(diǎn)的坐標(biāo);
(3)與直線的交點(diǎn)為,連結(jié),當(dāng)平分時(shí),的長為______.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與x軸、y軸分別交于點(diǎn)A,B,與函數(shù)y=x的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為2.在x軸上有一點(diǎn)P (a,0)(其中a>2),過點(diǎn)P作x軸的垂線,分別交函數(shù)和y=x的圖象于點(diǎn)C,D.
(1)求點(diǎn)A的坐標(biāo);
(2)若OB=CD,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程(請選擇合適的方法)
(1)x2+4x=0;
(2)x2+x﹣=0
(3)3x(x﹣1)=4(x﹣1);
(4)x2﹣4x+4=(3﹣2x)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果商計(jì)劃購進(jìn)甲、乙兩種水果進(jìn)行銷售,經(jīng)了解,甲種水果的進(jìn)價(jià)比乙種水果的進(jìn)價(jià)每千克少4元,且用800元購進(jìn)甲種水果的數(shù)量與用1000元購進(jìn)乙種水果的數(shù)量相同.
(1)求甲、乙兩種水果的單價(jià)分別是多少元?
(2)該水果商根據(jù)該水果店平常的銷售情況確定,購進(jìn)兩種水果共200千克,其中甲種水果的數(shù)量不超過乙種水果數(shù)量的3倍,且購買資金不超過3420元,購回后,水果商決定甲種水果的銷售價(jià)定為每千克20元,乙種水果的銷售價(jià)定為每千克25元,則水果商應(yīng)如何進(jìn)貨,才能獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生到恩格貝和康鎮(zhèn)進(jìn)行研學(xué)活動(dòng),澄澄老師在網(wǎng)上查得,和分別位于學(xué)校的正北和正東方向,位于南偏東37°方向,校車從出發(fā),沿正北方向前往地,行駛到15千米的處時(shí),導(dǎo)航顯示,在處北偏東45°方向有一服務(wù)區(qū),且位于,兩地中點(diǎn)處.
(1)求,兩地之間的距離;
(2)校車從地勻速行駛1小時(shí)40分鐘到達(dá)地,若這段路程限速100千米/時(shí),計(jì)算校車是否超速?
(參考數(shù)據(jù):,,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com