【題目】如圖,已知∠BOC2AOC,OD平分∠AOB,∠BOE90°,若∠AOC40°,則∠DOE的度數(shù)等于( 。

A.20°B.25°C.30°D.30°

【答案】C

【解析】

由∠BOC=2AOC可得∠AOB=3AOC=120°,由OD平分∠AOB可得∠AOD=AOB=60°,由∠BOE=90°可得∠AOE=AOB-BOE=30°,所以∠DOE=AOD-AOE=30°

解:∵∠BOC2∠AOCAOC40°,

∴∠AOBBOC+∠AOC =3∠AOC120°,

BOE90°,

∴∠AOE=∠AOB-BOE=30°,

OD平分AOB,

∴∠AOD60°,

∴∠DOEAODAOE30°

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)BDABBD,EDBD,連接AC、EC. 已知AB=2DE=1,BD=8,設(shè)CD=x.

(1)用含x的代數(shù)式表示AC+CE的長;

(2)AC+CE的值最小;

(3)根據(jù)(2)中的規(guī)律和結(jié)論,請(qǐng)構(gòu)圖求出代數(shù)式的最小值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問題:

1)已知點(diǎn)A,BC表示的數(shù)分別為1,,-3.觀察數(shù)軸,與點(diǎn)A的距離為3的點(diǎn)表示的數(shù)是 A,B兩點(diǎn)之間的距離為 。

2)數(shù)軸上,點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn)表示的數(shù)是 ;

3)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則與B點(diǎn)重合的點(diǎn)表示的數(shù)是 ;若此數(shù)軸上MN兩點(diǎn)之間的距離為2019MN的左側(cè)),且當(dāng)A點(diǎn)與C點(diǎn)重合時(shí),M點(diǎn)與N點(diǎn)也恰好重合,則點(diǎn)M表示的數(shù)是 ,點(diǎn)N表示的數(shù)是 。

4)若數(shù)軸上PQ兩點(diǎn)間的距離為aPQ的左側(cè)),表示數(shù)b的點(diǎn)到P,Q的兩點(diǎn)的距離相等,將數(shù)軸折疊,當(dāng)P點(diǎn)與Q點(diǎn)重合時(shí),點(diǎn)P表示的數(shù)是 ,點(diǎn)Q表示的數(shù)是 (用含a,b的式子表示這兩個(gè)數(shù))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且ABCD,OB=6cm,OC=8cm.求:

(1)BOC的度數(shù);

(2)BE+CG的長;

(3)O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AEBC,AFCD,垂足分別為E,F(xiàn),且BE=DF.

(1)求證:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ACBD,連結(jié)AB,直線AC、BD及線段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連結(jié)PAPB,構(gòu)成∠PAC、∠APB、∠PBD三個(gè)角.(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°)

(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),有∠APB=∠PAC+∠PBD,請(qǐng)說明理由;

(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=∠PAC+∠PBD是否成立?若不成立,試寫出∠PAC、∠APB、∠PBD三個(gè)角的等量關(guān)系(無需說明理由);

(3)當(dāng)動(dòng)點(diǎn)P在第③部分時(shí),探究∠PAC、∠APB、∠PBD之間的關(guān)系,寫出你發(fā)現(xiàn)的一個(gè)結(jié)論并加以說明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF45°,試判斷BE、EFFD之間的數(shù)量關(guān)系.

(發(fā)現(xiàn)證明)小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EFBE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.

(類比引申)如圖(2),四邊形ABCD中,∠BAD≠90°ABAD,∠B+D180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足   關(guān)系時(shí),仍有EFBE+FD

(探究應(yīng)用)如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知ABAD80米,∠B60°,∠ADC120°,∠BAD150°,道路BC、CD上分別有景點(diǎn)E、F,∠EAF75°AEAD,DF401)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù):≈1.41≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)表示,點(diǎn)表示,點(diǎn)表示.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿?cái)?shù)軸正方向以每秒個(gè)單位的速度勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā),沿?cái)?shù)軸負(fù)方向以每秒個(gè)單位的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為.

(1)當(dāng)為何值時(shí),、兩點(diǎn)相遇?相遇點(diǎn)所對(duì)應(yīng)的數(shù)是多少?

(2)在點(diǎn)出發(fā)后到達(dá)點(diǎn)之前,求為何值時(shí),點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離相等;

(3)在點(diǎn)向右運(yùn)動(dòng)的過程中,的中點(diǎn),在點(diǎn)到達(dá)點(diǎn)之前,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD,過點(diǎn)DDE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DFBE,連接AF,BF.

1)求證:四邊形BFDE是矩形;

2)若CF3,BF4DF5,求證:AF平分∠DAB.

查看答案和解析>>

同步練習(xí)冊答案