【題目】如圖,在矩形中,,,點(diǎn)在線段上,由點(diǎn)向點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí),停止運(yùn)動(dòng).以點(diǎn)為圓心,為半徑作,與交于點(diǎn),點(diǎn)在上且在矩形外,.
(1)當(dāng)時(shí),__________,扇形的面積=__________,點(diǎn)到的最短距離=__________.
(2)與相切時(shí),求的長(zhǎng)?
(3)如圖與交于點(diǎn)、,當(dāng)時(shí),求的長(zhǎng)?
(4)請(qǐng)從下面兩問(wèn)中,任選一道進(jìn)行作答.
①當(dāng)與有兩個(gè)公共點(diǎn)時(shí),直接寫(xiě)出的取值范圍.
②直接寫(xiě)出點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)以及的最短距離.
【答案】(1),,;(2);(3)4;(4)①,或;②,
【解析】
(1)根據(jù)已知直接可求;
(2)⊙P與AC相切時(shí),設(shè)切點(diǎn)為點(diǎn)H,連接PH,則PH⊥AC,在Rt△ADC中,AB=6,BC=8,得AC=10;在Rt△ADC中,sin∠DAC=,設(shè)⊙P半徑為x,則PH=PD=x,AP=8-x,在Rt△AHP中,sin∠PAH==,可求x=3,在Rt△PDC中,CD=6,PD=3,求得PC= ;
(3)過(guò)點(diǎn)P作PH⊥AC,連接PF;則∠PHA=∠ADC=90°,可證△AHP∽△ADC,設(shè)⊙P半徑為x,則PF=PD=x,AP=8-x,則PH=(8-x),在⊙P中,FH⊥AC,EF=6.4,HF=3.2,在Rt△PHF中,((8x))2+3.22=x2,求得PD=4;
(4)①作PM⊥AC于M,作PN⊥BC于N,易知PM=PD時(shí),⊙P與AC相切,與△ABC只有一個(gè)公共點(diǎn),PM<PD時(shí)⊙P與△ABC沒(méi)有公共點(diǎn);當(dāng)PN=PD時(shí),⊙P與BC相切,⊙P與△ABC有三個(gè)公共點(diǎn),當(dāng)PB=PD時(shí),⊙P與△ABC有三個(gè)公共點(diǎn);當(dāng)PB<PD≤AD時(shí),⊙P與△ABC有且只有兩個(gè)公共點(diǎn);故3<PD<6或<PD≤8;②由∠QPD=120°,PQ=PD可得:∠ADQ=30°,即Q的路徑是一條線段,且線段DQ位于AD上方,易求得DQ=8,BQ的最短距離即點(diǎn)B到DQ的垂線段長(zhǎng)度,可求得span>DQ的最小值=3+4;
解:(1)如圖1,連接PC,QP,PC交⊙P于T,
∵矩形ABCD
∴∠ADC=90°,CD=AB=6,AD=BC=8,
在Rt△CDP中,由勾股定理得:PC===4 ,
∵∠QPD=120°,PD=2
∴S扇形QPD==4π
CT=CP-PT=4-2=2
故答案為:4,4π,2;
(2)與相切時(shí),設(shè)切點(diǎn)為點(diǎn),
連接,則,
四邊形為矩形
在中,,,
在中,
設(shè)半徑為,則,,
在中,,,
在中,,,
(3)過(guò)點(diǎn)作,垂足為點(diǎn),連接,
則
又
設(shè)半徑為,則,,
在中,,
在中,根據(jù)勾股定理得:
解得:(舍去),
的長(zhǎng)為4.
(4)①,或
②,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明、小亮和小強(qiáng)三人準(zhǔn)備下象棋,他們約定用“拋硬幣”的游戲方式來(lái)確定哪個(gè)人先下棋,規(guī)則如下:三人手中各持有一枚質(zhì)地均勻的硬幣,他們同時(shí)將手中硬幣拋落到水平地面為一個(gè)回合,落地后,三枚硬幣中,恰有兩枚正面向上或者反面向上的兩人先下棋;若三枚硬幣均為正面向上或反面向上,則不能確定其中兩人先下棋.
(1)請(qǐng)你完成下面表示游戲一個(gè)回合所有可能出現(xiàn)的結(jié)果的樹(shù)狀圖;
(2)求出一個(gè)回合能確定兩人下棋的概率.
解:(1)樹(shù)狀圖為:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)開(kāi)展以“我最喜歡的職業(yè)”為主題的調(diào)查活動(dòng),通過(guò)對(duì)學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計(jì)圖.
(1)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求出扇形統(tǒng)計(jì)圖中,公務(wù)員部分對(duì)應(yīng)的圓心角的度數(shù);
(3)若從被調(diào)查的學(xué)生中任意抽取一名,求取出的這名學(xué)生最喜歡的職業(yè)是“教師”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的邊的垂直平分線,垂足為點(diǎn),與的延長(zhǎng)線交于點(diǎn),連接,,,與交于點(diǎn),則下列結(jié)論:
①四邊形是菱形;
②;
③;
④四邊形
以上四個(gè)結(jié)論中所有正確的結(jié)論是( )
A.①②B.①②③C.②④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校與圖書(shū)館在同一條筆直道路上,甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象信息, 分鐘時(shí)甲乙兩人相遇,甲的速度為 米/分鐘;
(2)求出線段所表示的函數(shù)表達(dá)式;
(3)當(dāng)甲,乙相距1000米時(shí),直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)開(kāi)展“綠化家鄉(xiāng)、植樹(shù)造林”活動(dòng),為了解全校植樹(shù)情況,對(duì)該校甲、乙、丙、
丁四個(gè)班級(jí)植樹(shù)情況進(jìn)行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問(wèn)題:
(1)這四個(gè)班共植樹(shù) 棵;
(2)請(qǐng)你在答題卡上補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)求圖1中“甲”班級(jí)所對(duì)應(yīng)的扇形圓心角的度數(shù);
(4)若四個(gè)班級(jí)植樹(shù)的平均成活率是95%,全校共植樹(shù)2000棵,請(qǐng)你估計(jì)全校種植的樹(shù)中成活的樹(shù)有多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究
(1)如圖①,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為 ;
(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個(gè)不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說(shuō)明理由;
問(wèn)題解決
(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點(diǎn)D,則對(duì)角線AC的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,是的外接圓,連結(jié)OA、OB、OC,延長(zhǎng)BO與AC交于點(diǎn)D,與交于點(diǎn)F,延長(zhǎng)BA到點(diǎn)G,使得,連接FG.
備用圖
(1)求證:FG是的切線;
(2)若的半徑為4.
①當(dāng),求AD的長(zhǎng)度;
②當(dāng)是直角三角形時(shí),求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com