【題目】如圖,在△ABC 中,AB=AC,點(diǎn)D,E在邊BC上,且BD=CE.

(1)求證: △ABD≌△ACE;

(2)∠B=40°,AB=BE,求∠DAE的度數(shù).

【答案】(1)見解析;(2)40°.

【解析】

(1)根據(jù)SAS即可證明.
(2)由AB=BE,推出∠BAE=∠BEA,由∠B=40°,推出∠BAE=∠BEA=70°,由△ABD≌△ACE,推出AD=AE,推出∠ADE=∠AED=70°,推出∠DAE=180°-70°-70°=40°.

(1)證明:∵AB=AC,

∴∠B=∠C,

△ABD△ACE,

∴△ABD≌△ACE.

(2)∵AB=BE,

∴∠BAE=∠BEA,

∵∠B=40°,

∴∠BAE=∠BEA=70°,

∵△ABD≌△ACE,

∴AD=AE,

∴∠ADE=∠AED=70°,

∴∠DAE=180°70°70°=40°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算:(a+b)2﹣b(2a+b)

(2)解不等式:(3x+4)(3x-4)<9(x-2)(x+3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)AC的坐標(biāo)分別為(10,0),(0,4),點(diǎn)DOA的中點(diǎn),點(diǎn)PBC上運(yùn)動(dòng),當(dāng)ODP是腰長為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大黃魚是中國特有的地方性魚種類,有“國魚”之稱.由于過去濫捕等多種因素,大黃魚資源已基本枯竭.目前,我市已培育出十余種大黃魚品種.某魚苗人工養(yǎng)殖基地對(duì)其中的四個(gè)品種“寧港”、“御龍”、“甬岱”、“象山港”共300尾魚苗進(jìn)行成活實(shí)驗(yàn),從中選出成活率最高的品種進(jìn)行推廣.通過實(shí)驗(yàn)得知“甬岱”品種魚苗成活率為80%,并把實(shí)驗(yàn)數(shù)據(jù)繪制成下列兩幅統(tǒng)計(jì)圖(部分信息未給出):

(1)求實(shí)驗(yàn)中“寧港”品種魚苗的數(shù)量;
(2)求實(shí)驗(yàn)中“甬岱”品種魚苗的成活數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)你認(rèn)為應(yīng)選哪一品種進(jìn)行推廣?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行.本屆論壇期間,中國同30多個(gè)國家簽署經(jīng)貿(mào)合作協(xié)議.某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū).已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價(jià)各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的直徑, 是弦, , .若用扇形 (圖中陰影部分)圍成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐底面圓的半徑是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校機(jī)器人興趣小組在如圖①所示的矩形場地上開展訓(xùn)練.機(jī)器人從點(diǎn) 出發(fā),在矩形 邊上沿著 的方向勻速移動(dòng),到達(dá)點(diǎn) 時(shí)停止移動(dòng).已知機(jī)器人的速度為 個(gè)單位長度/ ,移動(dòng)至拐角處調(diào)整方向需要 (即在 、 處拐彎時(shí)分別用時(shí) ).設(shè)機(jī)器人所用時(shí)間為 時(shí),其所在位置用點(diǎn) 表示, 到對(duì)角線 的距離(即垂線段 的長)為 個(gè)單位長度,其中 的函數(shù)圖像如圖②所示.

(1)求 、 的長;
(2)如圖②,點(diǎn) 、 分別在線段 、 上,線段 平行于橫軸, 的橫坐標(biāo)分別為 、 .設(shè)機(jī)器人用了 到達(dá)點(diǎn) 處,用了 到達(dá)點(diǎn) 處(見圖①).若 ,求 、 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y= x的圖象與反比例函數(shù)y= 的圖象交于A(a,﹣2),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)C,連接PO,若△POC的面積為3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案