【題目】如圖,直線軸交于點,與軸交于點.點是該直線上不同于的點,且

1)寫出、兩點的坐標;

2)過動點且垂直于軸的直線與直線交于點,若點不在線段上,求的取值范圍;

3)若直線與直線所夾銳角為,請直接寫出直線的函數(shù)解析式.

【答案】1,;(2;(3

【解析】

解:(1)對于直線,令,得,令,得

,

2)如解圖①,∵點C在直線上,且,點C不與點B重合,

∴點CBA的右上方,過點C軸于點F

,,,

,

又∵,

,

觀察圖象可知要使過點且垂直于x軸的直線PD與直線的交點D不在線段BC上,則m的取值范圍為:;

圖①

3)直線BE的函數(shù)解析式為

【解法提示】如解圖②,作,使得,作軸于點H,則是等腰直角三角形,

,

,,

,

,

,

,

設(shè)直線BE的函數(shù)解析式為

將點,點分別代入

,解得,

∴直線BE的函數(shù)解析式為,

當直線⊥直線BE時,直線也滿足條件,

∴直線的函數(shù)解析式為,

∴滿足條件的直線BE的函數(shù)解析式為.

圖②

【思維教練】(1)分別令求解;(2)先確定點的位置,過點軸于點,利用全等三角形的性質(zhì),求出點坐標即可求解;(3)直線位置固定,兩條直線夾角為定值時,另一條直線有兩種情況,且由夾角為,可知兩種情況下的兩條直線垂直.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,張老師舉了下面的例題:

1 等腰三角形中,,求的度數(shù).(答案:

2 等腰三角形中,,求的度數(shù).(答案:

張老師啟發(fā)同學們進行變式,小敏編了如下一題:

變式 等腰三角形中,,求的度數(shù).

(1)請你解答以上的變式題.

(2)解(1)后,小敏發(fā)現(xiàn),的度數(shù)不同,得到的度數(shù)的個數(shù)也可能不同.如果在等腰三角形中,設(shè),當有三個不同的度數(shù)時,請你探索的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸于兩點,交軸于點,且,點是第三象限內(nèi)拋物線上的一動點.

1)求此拋物線的表達式;

2)若,求點的坐標;

3)連接,求面積的最大值及此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖①,點E在正方形ABCD的內(nèi)部,且EBEC,過點E畫一條射線平分BEC;

2)如圖②,在ABC 中,DEBCEFAB,請僅用直尺(無刻度)作一個三角形,使所作三角形的面積等于ABC 面積的一半并把所作的三角形用陰影表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與軸交于點,與正比例函數(shù)的圖象交于點,點軸的正半軸上,且點的橫坐標為,過點軸的垂線,分別交一次函數(shù)的圖象于點,交正比例函數(shù)的圖象于點

1)求點的坐標;

2)當為何值時,

3)連接、,于點,已知,在討論的面積與面積的大小問題時,嘉嘉認為,淇淇認為,請你作為小法官,幫助他們兩人評判,誰的說法正確.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,2×2網(wǎng)格(每個小正方形的邊長為1)中有A,BC,D,E,F,GH,O九個格點.拋物線l的解析式為y=(-1)nx2+bx+c(n為整數(shù)).

(1)n為奇數(shù),且l經(jīng)過點H(0,1)C(2,1),求b,c的值,并直接寫出哪個格點是該拋物線上的頂點;

(2)n為偶數(shù),且l經(jīng)過點A(1, 0)B(2,0),通過計算說明點F(02)H(0,1)是否在拋物線上;

(3)l經(jīng)過這九個格點中的三個,直接寫出滿足這樣條件的拋物線條數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象軸交于點,與軸交于點,拋物線軸的交點分別為、(點在點的左側(cè)).

1)當的頂點在上時,求的值;

2)若、兩點中有一點與點關(guān)于原點對稱,試判斷這個點是點還是點;

3)若的頂點為,對稱軸與的交點為,且點在點的下方,當為何值時,線段的長最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了迎接體育中考,初三7班的體育老師對全班48名學生進行了一次體能模擬測試,得分均為整數(shù),滿分10分,成績達到6分以上(包括6分)為合格,成績達到9分以上(包括9分)為優(yōu)秀,這次模擬測試中男、女生全部成績分布的條形統(tǒng)計圖如下

1)請補充完成下面的成績統(tǒng)計分析表:

平均分

方差

中位數(shù)

合格率

優(yōu)秀率

男生

6.9

2.4

______

91.7%

16.7%

女生

______

1.3

______

83.3%

8.3%

2)男生說他們的合格率、優(yōu)秀率均高于女生,所以他們的成績好于女生,但女生不同意男生的說法,認為女生的成績要好于男生,請給出兩條支持女生觀點的理由;

3)體育老師說,咱班的合格率基本達標,但優(yōu)秀率太低,我們必須加強體育鍛煉,兩周后的目標是:全班優(yōu)秀率達到50%.如果女生新增優(yōu)秀人數(shù)恰好是男生新增優(yōu)秀人數(shù)的兩倍,那么男、女生分別新增多少優(yōu)秀人數(shù)才能達到老師的目標?

查看答案和解析>>

同步練習冊答案