【題目】如圖,已知拋物線y=x2+bx+c與x軸交于點A,B,AB=2,與y軸交于點C,對稱軸為直線x=2.
(1)求拋物線的函數表達式;
(2)設D為拋物線的頂點,連接DA、DB,試判斷△ABD的形狀,并說明理由;
(3)設P為對稱軸上一動點,要使PC﹣PB的值最大,求出P點的坐標.
【答案】(1)拋物線的函數表達式為y=x2﹣4x+3;(2)△ADB是等腰直角三角形;理由見解析;(3)P(2,﹣3).
【解析】
(1)根據拋物線對稱軸的定義易求A(1,0),B(3,0).所以1、3是關于x的一元二次方程x2+bx+c=0的兩根.由韋達定理易求b、c的值;
(2)先求出頂點D的坐標,再由勾股定理的逆定理證明△ABD是直角三角形,再由對稱得AD=BD,進而得△ABD是等腰直角三角形;
(3)連接CA,延長CA與直線x=2交于點P,連接BP,此時P點就是PC﹣PB的值最大的點,求出直線AC的解析式,再求直線AC與直線x=2的交點坐標便可.
(1)如圖,∵AB=2,對稱軸為直線x=2.
∴點A的坐標是(1,0),點B的坐標是(3,0).
∵拋物線y=x2+bx+c與x軸交于點A,B,
∴1、3是關于x的一元二次方程x2+bx+c=0的兩根.
由韋達定理,
1+3=﹣b,1×3=c,
∴b=﹣4,c=3,
∴拋物線的函數表達式為y=x2﹣4x+3;
(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴D(2,﹣1),
∴AD2+BD2=(2﹣1)2+(﹣1)2+(2﹣3)2+(﹣1)2=4,
∵AB2=22=4,
∴AD2+BD2=AB2,
∴△ADB是直角三角形,
由對稱性有AD=BD,
∴△ADB是等腰直角三角形;
(3)連接CA,延長CA與直線x=2交于點P,連接BP,如圖2,
∵A、B兩點關于直線x=2對稱,
∴PB=PA,
∴PC﹣PB=PC﹣PA=AC其值最大(∵另取一點P′,有P′C﹣P′B=P′C﹣P′A<AC),
令x=0,得y=x2﹣4x+3=3,
∴C(0,3),
∵A(1,0),
∴易求直線AC的解析式為:y=﹣3x+3,
當x=2時,y=﹣3x+3=﹣3,
∴P(2,﹣3).
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ACD的外接圓,AB是直徑,過點D作直線DE∥AB,過點B作直線BE∥AD,兩直線交于點E,如果∠ACD=45°,⊙O的半徑是4cm
(1)請判斷DE與⊙O的位置關系,并說明理由;
(2)求圖中陰影部分的面積(結果用π表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x﹣2與x軸,y軸分別交于點D,C.點G,H是線段CD上的兩個動點,且∠GOH=45°,過點G作GA⊥x軸于A,過點H作HB⊥y軸于B,延長AG,BH交于點E,則過點E的反比例函數y=的解析式為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】央視“經典詠流傳”開播以來受到社會廣泛關注,金昌市某校就學生喜愛情況進行了隨機調查,對收集的信息進行統(tǒng)計,繪制了下面兩副尚不完整的統(tǒng)計圖,請你根據統(tǒng)計圖所提供的信息,解答下列問題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”
(1)此次抽樣調查,共調查了 名學生;
(2)將圖1中的條形統(tǒng)計圖補充完整;
(3)圖2中,C部分所在扇形的圓心角為 度;
(4)若該校共有學生1800人,估計該校學生中D類有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某高中學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調查,并根據調查結果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6種型號).
根據以上信息,解答下列問題:
(1)該班共有多少名學生?其中穿175型校服的學生有多少?
(2)在條形統(tǒng)計圖中,請把空缺部分補充完整.
(3)在扇形統(tǒng)計圖中,請計算185型校服所對應的扇形圓心角的大;
(4)求該班學生所穿校服型號的眾數和中位數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明利用剛學過的測量知識來測量學校內一棵古樹的高度。一天下午,他和學習小組的同學帶著測量工具來到這棵古樹前,由于有圍欄保護,他們無法到達古樹的底部B,如圖所示。于是他們先在古樹周圍的空地上選擇一點D,并在點D處安裝了測量器DC,測得古樹的頂端A的仰角為45°;再在BD的延長線上確定一點G,使DG=5米,并在G處的地面上水平放置了一個小平面鏡,小明沿著BG方向移動,當移動帶點F時,他剛好在小平面鏡內看到這棵古樹的頂端A的像,此時,測得FG=2米,小明眼睛與地面的距離EF=1.6米,測傾器的高度CD=0.5米。已知點F、G、D、B在同一水平直線上,且EF、CD、AB均垂直于FB,求這棵古樹的高度AB。(小平面鏡的大小忽略不計)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC為等邊三角形,點O為AB邊上一點,且BO=2AO=4,將△ABC繞點O逆時針旋轉60°得△DEF,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次安全知識測驗中,學生得分均為整數,滿分10分,成績達到9分為優(yōu)秀,這次測驗中甲、乙兩組學生人數相同,成績如下統(tǒng)計圖:
(1)在乙組學生成績統(tǒng)計圖中,8分所在的扇形的圓心角為___________度
(2)請補充完整下面的成績統(tǒng)計分析表:
平均數 | 方差 | 眾數 | 中位數 | 優(yōu)秀率 | |
甲組 | 7 | 1.8 | 7 | 7 | |
乙組 | 1.36 |
(3)你認為那組成績較好?從以上信息中寫出兩條支持你的選擇
(4)從甲、乙兩組得9分的學生中抽取兩人參加市級比賽,求這兩人來自不同組的概率
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=4,∠C=90°,點D在BC上,且CD=3DB,將△ABC折疊,使點A與點D重合,EF為折痕,則tan∠BED的值是_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com