【題目】某高中學(xué)校為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)三班學(xué)生即將所穿校服型號(hào)情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6種型號(hào)).
根據(jù)以上信息,解答下列問題:
(1)該班共有多少名學(xué)生?其中穿175型校服的學(xué)生有多少?
(2)在條形統(tǒng)計(jì)圖中,請把空缺部分補(bǔ)充完整.
(3)在扇形統(tǒng)計(jì)圖中,請計(jì)算185型校服所對(duì)應(yīng)的扇形圓心角的大小;
(4)求該班學(xué)生所穿校服型號(hào)的眾數(shù)和中位數(shù).
【答案】(1)該班共有50名學(xué)生,其中穿175型校服的學(xué)生有10名;(2)見解析;(3)14.4°;(4)眾數(shù)是165和170;中位數(shù)是170
【解析】
(1)根據(jù)穿165型的人數(shù)與所占的百分比列式進(jìn)行計(jì)算即可求出學(xué)生總?cè)藬?shù),再乘以175型所占的百分比計(jì)算即可得解;
(2)求出185型的人數(shù),然后補(bǔ)全統(tǒng)計(jì)圖即可;
(3)用185型所占的百分比乘以360°計(jì)算即可得解;
(4)根據(jù)眾數(shù)的定義以及中位數(shù)的定義解答.
解:(1)15÷30%=50(名),50×20%=10(名),
即該班共有50名學(xué)生,其中穿175型校服的學(xué)生有10名;
(2)185型的學(xué)生人數(shù)為:50-3-15-15-10-5=50-48=2(名),
補(bǔ)全統(tǒng)計(jì)圖如圖所示;
(3)185型校服所對(duì)應(yīng)的扇形圓心角為:×360°=14.4°;
(4)∵165型和170型出現(xiàn)的次數(shù)最多,都是15次,
∴眾數(shù)是165和170;
∵共有50個(gè)數(shù)據(jù),第25、26個(gè)數(shù)據(jù)都是170,
∴中位數(shù)是170.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng).如圖1,將矩形紙片沿對(duì)角線剪開,得到和.并且量得,.
操作發(fā)現(xiàn):
(1)將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使,得到如圖2所示的,過點(diǎn)作的平行線,與的延長線交于點(diǎn),則四邊形的形狀是________.
(2)創(chuàng)新小組將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使、、三點(diǎn)在同一條直線上,得到如圖3所示的,連接,取的中點(diǎn),連接并延長至點(diǎn),使,連接、,得到四邊形,發(fā)現(xiàn)它是正方形,請你證明這個(gè)結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將沿著方向平移,使點(diǎn)與點(diǎn)重合,此時(shí)點(diǎn)平移至點(diǎn),與相交于點(diǎn),如圖4所示,連接,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國家“家電下鄉(xiāng)”政策的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場每天銷售這種冰箱的利潤最高?最高利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四邊形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O交邊DC于E、F兩點(diǎn),AD=1,BC=5,設(shè)⊙O的半徑長為r.
(1)聯(lián)結(jié)OF,當(dāng)OF∥BC時(shí),求⊙O的半徑長;
(2)過點(diǎn)O作OH⊥EF,垂足為點(diǎn)H,設(shè)OH=y,試用r的代數(shù)式表示y;
(3)設(shè)點(diǎn)G為DC的中點(diǎn),聯(lián)結(jié)OG、OD,△ODG是否能成為等腰三角形?如果能,試求出r的值;如不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于點(diǎn)A,B,AB=2,與y軸交于點(diǎn)C,對(duì)稱軸為直線x=2.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)D為拋物線的頂點(diǎn),連接DA、DB,試判斷△ABD的形狀,并說明理由;
(3)設(shè)P為對(duì)稱軸上一動(dòng)點(diǎn),要使PC﹣PB的值最大,求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有若干間標(biāo)準(zhǔn)房,當(dāng)標(biāo)準(zhǔn)房的價(jià)格為200元時(shí),每天入住的房間數(shù)為60間,經(jīng)市場調(diào)查表明,該賓館每間標(biāo)準(zhǔn)房的價(jià)格在170~240元之間(含170元,240元)浮動(dòng)時(shí),每天入住的房間數(shù)(間)與每間標(biāo)準(zhǔn)房的價(jià)格(元)的數(shù)據(jù)如下表:
(元) | … | 190 | 200 | 210 | 220 | … |
(間) | … | 65 | 60 | 55 | 50 | … |
(1)根據(jù)所給數(shù)據(jù)在坐標(biāo)系中描出相應(yīng)的點(diǎn),并畫出圖象.
(2)求關(guān)于的函數(shù)表達(dá)式、并寫出自變量的取值范圍.
(3)設(shè)客房的日營業(yè)額為(元).若不考慮其他因素,問賓館標(biāo)準(zhǔn)房的價(jià)格定為多少元時(shí).客房的日營業(yè)額最大?最大為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC為直徑,點(diǎn)D為弧ACB的中點(diǎn),過點(diǎn)D的切線與BC的延長線交于點(diǎn)E.
(1)用尺規(guī)作圖作出圓心O;(保留作圖痕跡,不寫作法);
(2)求證:DE⊥BC;
(3)若OC=2CE=4,求圖中陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c過點(diǎn)A(3, 0)、點(diǎn)B(0, 3).點(diǎn)M(m, 0)在線段OA上(與點(diǎn)A、O不重合),過點(diǎn)M作x軸的垂線與線段AB交于點(diǎn)P,與拋物線交于點(diǎn)Q,聯(lián)結(jié)BQ.
(1)求拋物線表達(dá)式;
(2)聯(lián)結(jié)OP,當(dāng)∠BOP=∠PBQ時(shí),求PQ的長度;
(3)當(dāng)△PBQ為等腰三角形時(shí),求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com