【題目】八(3)班同學(xué)到野外上數(shù)學(xué)活動課,為測量池塘兩端A、B的距離,設(shè)計了如下方案:
(Ⅰ)如圖1,先在平地上取一個可直接到達(dá)A、B的點C,連接AC、BC,并分別延長AC至D,BC至E,使DC=AC,EC=BC,最后測出DE的距離即為AB的長;
(Ⅱ)如圖2,先過B點作AB的垂線,再在BF上取C、D兩點使BC=CD,接著過D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離.
閱讀回答下列問題:
(1)方案(Ⅰ)是否可行?請說明理由.
(2)方案(Ⅱ)是否可行?請說明理由.
(3)方案(Ⅲ)中作BF⊥AB,ED⊥BF的目的是;若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立? .
【答案】
(1)
解:方案(Ⅰ)可行;理由如下:
∵DC=AC,EC=BC,
在△ACB和△DCE中, ,
∴△ACB≌△DCE(SAS),
∴AB=DE,
∴測出DE的距離即為AB的長,
故方案(Ⅰ)可行
(2)
解:方案(Ⅱ)可行;理由如下:
∵AB⊥BC,DE⊥CD
∴∠ABC=∠EDC=90°,
在△ACB和△EDC中, ,
∴△ABC≌△EDC(ASA),
∴AB=ED,
∴測出DE的長即為AB的距離,
故方案(Ⅱ)可行
(3)∠ABD=∠BDE;不成立
【解析】解:(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE.
若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)不成立;
理由如下:若∠ABD=∠BDE≠90°,∠ACB=∠ECD,
∴△ABC∽△EDC,
∴ ,
∴只要測出ED、BC、CD的長,即可求得AB的長.
但是此題沒有其他條件,可能無法測出其他線段長度,
∴方案(Ⅱ)不成立;
所以答案是:∠ABD=∠BDE,不成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是∠AOB的平分線上一點,EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:
(1)∠ECD=∠EDC;
(2)OC=OD
(3)OE是線段CD的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市2009年元旦的最高氣溫為2℃,最低氣溫為-8℃,那么這天的最高氣溫比最低氣溫高( )
A.-10℃
B.-6℃
C.6℃
D.10℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=x+2的圖象不經(jīng)過的象限是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一矩形紙片沿一條直線剪成兩個多邊形,那么這兩個多邊形的內(nèi)角和之和不可能是( 。
A.360°
B.540°
C.720°
D.900°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為6,AD是BC邊上的中線,M是AD上的動點,E是AC邊上一點,若AE=2,EM+CM的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分線,垂足為D,交AC于E.
(1)若∠ABE=45°,求∠EBC的度數(shù);
(2)若AB+BC=30,求△BCE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(,),點Q的坐標(biāo)為(,),且,,若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點P,Q的“相關(guān)矩形”.下圖為點P,Q 的“相關(guān)矩形”的示意圖.
(1)已知點A的坐標(biāo)為(1,0).
①若點B的坐標(biāo)為(3,1)求點A,B的“相關(guān)矩形”的面積;
②點C在直線x=3上,若點A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(2)⊙O的半徑為,點M的坐標(biāo)為(m,3).若在⊙O上存在一點N,使得點M,N的“相關(guān)矩形”為正方形,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com