【題目】如圖1,拋物線軸于點和點,交軸于點,一次函數(shù)的圖象經(jīng)過點,,點是拋物線上第二象限內(nèi)一點.

1)求二次函數(shù)和一次函數(shù)的表達式;

2)過點軸的平行線交于點,作的垂線于點,設(shè)點的橫坐標為,的周長為.

①求關(guān)于的函數(shù)表達式;

②求的周長的最大值及此時點的坐標;

3)如圖2,連接,是否存在點,使得以,為頂點的三角形與相似?若存在,直接寫出點的橫坐標;若不存在,請說明理由.

【答案】1)拋物線為y= -x2-x+4;一次函數(shù)的表達式為y=x+4;(2)①關(guān)于的函數(shù)表達式為,②的周長的最大值為 ,此時點P;(3)點的橫坐標為 .

【解析】

1)把點A、BC的坐標代入拋物線或直線表達式,即可求解;
2)設(shè)點P坐標為(t,-t2-t+4),令-t2-t+4=x+4,解得:x= ,PD= ,利用PDM∽△CBO,即可求解;
3)分∠PCM=CBO、∠PCM=BCO,兩種情況求解即可.

解:(1)把點和點代入拋物線,

,解得,∴拋物線為;

,,解得,

,

,代入一次函數(shù),

,解得,∴一次函數(shù)的表達式為

2)由題意,,

周長為12,

,,

,解得

,

軸,

,

,

,

,

關(guān)于的函數(shù)表達式為,

∴當時,的周長的最大值為,

此時點

3)存在,點的橫坐標為.

①如圖1,當時,

,此時

,

解得(舍去)或

②如圖2,當時,

,作點關(guān)于直線的對稱點

直線交拋物線于另一點即為所求的點,作軸于.

易得,得,

∴點,

可得直線的表達式為,求得點的橫坐標為.

故答案為:(1)拋物線為y= -x2-x+4;一次函數(shù)的表達式為y=x+4;(2)①關(guān)于的函數(shù)表達式為,②的周長的最大值為 ,此時點P;(3)點的橫坐標為 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖坐標系中,O(0,0) ,A(6,6),B(12,0).將OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE,則CE : DE的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,,點上的動點,且.

(1)的長度;

(2)在點D運動的過程中,弦AD的延長線交BC的延長線于點E,問ADAE的值是否變化?若不變,請求出ADAE的值;若變化,請說明理由.

(3)在點D的運動過程中,過A點作AH⊥BD,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了弘揚我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個獎項:祖沖之獎、劉徽獎趙爽獎楊輝獎,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲祖沖之獎的學(xué)生成績統(tǒng)計表:

祖沖之獎的學(xué)生成績統(tǒng)計表:

分數(shù)

80

85

90

95

人數(shù)

4

2

10

4

根據(jù)圖表中的信息,解答下列問題:

這次獲得劉徽獎的人數(shù)是多少,并將條形統(tǒng)計圖補充完整;

獲得祖沖之獎的學(xué)生成績的中位數(shù)是多少分,眾數(shù)是多少分;

在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數(shù)字,“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標,把y作為縱坐標,記作點用列表法或樹狀圖法求這個點在第二象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三個完全相同的小球上分別寫上-2,-1,2三個數(shù)字,然后裝入一個不透明的布袋內(nèi)攪勻,從布袋中取出一個球,記下小球上的數(shù)字為,放回袋中再攪勻,然后再從袋中取出一個小球,記下小球上的數(shù)字為,組成一對數(shù).

1)請用列表或畫樹狀圖的方法,表示出數(shù)對的所有可能的結(jié)果;

2)求直線不經(jīng)過第一象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲樓AB20m,乙樓CD10m,兩棟樓之間的水平距離BD20m,為了測量某電視塔EF的高度,小明在甲樓樓頂A處觀測電視塔塔頂E,測得仰角為37°,小麗在乙樓樓頂C處觀測電視塔塔頂E,測得仰角為45°,求電視塔的高度EF.(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.751.4,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在ABC中,∠B45°,點DBC邊的中點,DEBC于點D,交AB于點E,連接CE

1)求∠AEC的度數(shù);

2)請你判斷AEBE、AC三條線段之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:過外一點C直徑AF,垂足為E,交弦ABD,若,則

判斷直線BC的位置關(guān)系,并證明;

OA中點,,,請直接寫出圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案