【題目】如圖,ABCD的對角線AC,BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連結(jié)OE.下列結(jié)論:
①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的結(jié)論有______.(填序號)
【答案】①②④
【解析】
由四邊形ABCD是平行四邊形,得到∠ABC=∠ADC=60°,∠BAD=120°,根據(jù)AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等邊三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正確;由于AC⊥AB,得到SABCD=ABAC,故②正確,根據(jù)AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③錯誤;根據(jù)三角形的中位線定理得到OE=AB,于是得到OE=BC,故④正確.
∵四邊形ABCD是平行四邊形,
∴∠ABC=∠ADC=60°,∠BAD=120°,
∵AE平分∠BAD,
∴∠BAE=∠EAD=60°
∴△ABE是等邊三角形,
∴AE=AB=BE,
∵AB=BC,
∴AE=BC,
∴∠BAC=90°,
∴∠CAD=30°,故①正確;
∵AC⊥AB,
∴SABCD=ABAC,故②正確,
∵AB=BC,OB=BD,
∵BD>BC,
∴AB≠OB,故③錯誤;
∵CE=BE,CO=OA,
∴OE=AB,
∴OE=BC,故④正確.
故答案為:①②④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC的延長線于點(diǎn)F,以EC、CF為鄰邊作ECFG.
(1)如圖1,證明ECFG為菱形;
(2)如圖2,若∠ABC=120°,連接BG、CG,并求出∠BDG的度數(shù):
(3)如圖3,若∠ABC=90°,AB=6,AD=8,M是EF的中點(diǎn),求DM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2-2amx+am2+2m+4的頂點(diǎn)P在一條定直線l上.
(1)直接寫出直線l的解析式;
(2)若存在唯一的實(shí)數(shù)m,使拋物線經(jīng)過原點(diǎn).
①求此時的a和m的值;
②拋物線的對稱軸與x軸交于點(diǎn)A,B為拋物線上一動點(diǎn),以OA、OB為邊作□OACB,若點(diǎn)C在拋物線上,求B的坐標(biāo).
(3)拋物線與直線l的另一個交點(diǎn)Q,若a=1,直接寫出△OPQ的面積的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)停車難已成為合肥城市病之一,主要表現(xiàn)在居住停車位不足,停車資源結(jié)構(gòu)性失衡,中心城區(qū)供需差距大等等.如圖是張老師的車與墻平行停放的平面示意圖,汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,已知小汽車車門寬AO為 1.2 米,當(dāng)車門打開角度∠AOB為40°時,車門是否會碰到墻?請說明理由.(參考數(shù)據(jù):sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,AB=8,AD⊥BC,點(diǎn)E為線段AD上的動點(diǎn),連接CE,以CE為邊作等邊△CEF,連接DF,則線段DF的最小值為( 。
A.B.4C.2D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過⊙C上一點(diǎn)P作⊙C的切線l.當(dāng)入射光線照射在點(diǎn)P處時,產(chǎn)生反射,且滿足:反射光線與切線l的夾角和入射光線與切線l的夾角相等,點(diǎn)P稱為反射點(diǎn).規(guī)定:光線不能“穿過”⊙C,即當(dāng)入射光線在⊙C外時,只在圓外進(jìn)行反射;當(dāng)入射光線在⊙C內(nèi)時,只在圓內(nèi)進(jìn)行反射.特別地,圓的切線不能作為入射光線和反射光線.光線在⊙C外反射的示意圖如圖1所示,其中∠1=∠2.
(1)自⊙C內(nèi)一點(diǎn)出發(fā)的入射光線經(jīng)⊙C第一次反射后的示意圖如圖2所示,P1是第1個反射點(diǎn).請?jiān)趫D2中作出光線經(jīng)⊙C第二次反射后的反射光線和反射點(diǎn)P3;
(2)當(dāng)⊙O的半徑為1時,如圖3:
①第一象限內(nèi)的一條入射光線平行于y軸,且自⊙O的外部照射在圓上點(diǎn)P處,此光線經(jīng)⊙O反射后,反射光線與x軸平行,則反射光線與切線l的夾角為___________°;
②自點(diǎn)M(0,1)出發(fā)的入射光線,在⊙O內(nèi)順時針方向不斷地反射.若第1個反射點(diǎn)是P1,第二個反射點(diǎn)是P2,以此類推,第8個反射點(diǎn)是P8恰好與點(diǎn)M重合,則第1個反射點(diǎn)P1的坐標(biāo)為___________;
(3)如圖4,點(diǎn)M的坐標(biāo)為(0,2),⊙M的半徑為1.第一象限內(nèi)自點(diǎn)O出發(fā)的入射光線經(jīng)⊙M反射后,反射光線與坐標(biāo)軸無公共點(diǎn),求反射點(diǎn)P的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時,y的值隨x值的增大而增大.
其中正確的結(jié)論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,補(bǔ)充下列結(jié)論和依據(jù).
∵∠ACE=∠D(已知),
∴_____∥______(______________________ ).
∵∠ACE=∠FEC(已知),
∴______∥______(_ ___ _______).
∵∠AEC=∠BOC(已知),
∴_____∥______(___ _____________________).
∵∠BFD+∠FOC=180°(已知),
∴_____∥______(_____ ____________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=90°,AD=18cm,BC=30cm.點(diǎn)E從點(diǎn)D出發(fā),以1cm/s的速度向點(diǎn)A運(yùn)動:點(diǎn)F從點(diǎn)C同時出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動,規(guī)定其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動的時間為t秒,M為BC上一點(diǎn)且CM=13cm,t=_____s秒時,以D、M、E、F為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com