【題目】如圖,數軸的原點為O,點A、B、C是數軸上的三點,點B對應的數為1,AB=8,BC=3,動點P、Q同時從A、C出發(fā),分別以每秒2個長度單位和每秒1個長度單位的速度沿數軸正方向運動.設運動時間為t秒(t>0)
(1)求點A、C分別對應的數;
(2)求點P、Q分別對應的數;(用含t的式子表示)
(3)試問當t為何值時,OP=OQ?
【答案】(1)點A對應的數為﹣7,點C對應的數為4.(2)點P對應的數是﹣7+2t,點Q對應的數是4+t.(3)當t=1或11時,OP=OQ.
【解析】
(1)由點B對應的數及線段AB,BC的長,可找出點A,C對應的數;
(2)根據點P,Q的出發(fā)點、速度及方向,可找出當運動時間為t秒時點P,Q對應的數;
(3)分點P在原點的左側及點P在原點的右側兩種情況考慮,由OP=OQ,即可得出關于t的一元一次方程,解之即可得出結論.
解:(1)1﹣8=﹣7,1+3=4,
∴點A對應的數為﹣7,點C對應的數為4.
(2)∵動點P、Q同時從A、C出發(fā),分別以每秒2個長度單位和每秒1個長度單位的速度沿數軸正方向運動,
∴當運動時間為t秒時,點P對應的數是﹣7+2t,點Q對應的數是4+t.
(3)①當P在原點左側時,OP=7﹣2t,OQ=4+t,
∴7﹣2t=4+t,
解得:t=1;
②當P在原點右側時,OP=2t﹣7,OQ=4+t,
∴2t﹣7=4+t,
解得:t=11.
綜上所述:當t=1或11時,OP=OQ.
科目:初中數學 來源: 題型:
【題目】如圖,OB為∠AOC內一條射線,∠AOB的余角是它自身的兩倍.
(1)求∠AOB的度數;
(2)射線OE從OA開始,在∠AOB內以1°/s的速度繞著O點逆時針方向旋轉,轉到OB停止,同時射線OF在∠BOC內從OB開始以3°/s的速度繞O點逆時針方向旋轉轉到OC停止,設運動時間為t秒.
①若OE,OF運動的任一時刻,均有∠COF=3∠BOE,求∠AOC的度數;
②OP為∠AOC內任一射線,在①的條件下,當t=10時,以OP為邊所有角的度數和的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分∠AOC和∠BOC.
(1)填空:與∠AOE互補的角有 ;
(2)若∠COD=30°,求∠DOE的度數;
(3)當∠AOD=α°時,請直接寫出∠DOE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大小.
其中會隨點P的移動而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)某學校“智慧方園”數學社團遇到這樣一個題目:
如圖1,在中,點在線段上,,,,,求的長.
經過社團成員討論發(fā)現(xiàn),過點作,交的延長線于點,通過構造就可以解決問題(如圖.
請回答: , .
(2)請參考以上解決思路,解決問題:
如圖3,在四邊形中,對角線與相交于點,,,,,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】規(guī)定:[x]表示不大于x的最大整數,(x)表示不小于x的最小整數,[x)表示最接近x的整數(x≠n+0.5,n為整數),例如:[2.3]=2,(2.3)=3,[2.3)=2.當﹣1<x<1時,化簡 [x]+(x)+[x)的結果是__________________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com