【題目】規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(xn+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.當(dāng)﹣1<x<1時(shí),化簡(jiǎn) [x]+x+[x)的結(jié)果是__________________

【答案】-2或﹣1或0或1或2

【解析】有三種情況:

①當(dāng)時(shí),[x]-1,(x)=0,[2.3=-10,

[x]+x+[x)=-2-1;

②當(dāng)時(shí),[x]0,(x)=0,[2.3=0,

[x]+x+[x)=0;

③當(dāng)時(shí),[x]0,(x)=1,[2.3=01,

[x]+x+[x)=12

綜上所述,化簡(jiǎn)[x]+x+[x)的結(jié)果是-2或﹣1012.

故答案為:-2或﹣1012.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,則下列敘述不正確的是( 。

A. 點(diǎn)O不在直線AC

B. 射線AB與射線BC是指同一條射線

C. 圖中共有5條線段

D. 直線AB與直線CA是指同一條直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點(diǎn)MO,N對(duì)應(yīng)的數(shù)分別為-1,03,點(diǎn)P為數(shù)軸上任意一點(diǎn)其對(duì)應(yīng)的數(shù)為x

1MN的長(zhǎng)為 ;

2如果點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等那么x的值是 ;

3數(shù)軸上是否存在點(diǎn)P使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是8?若存在直接寫出x的值;若不存在,請(qǐng)說明理由

4如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,先把梯形ABCD向左平移6個(gè)單位長(zhǎng)度得到梯形A1B1C1D1.

(1)請(qǐng)你在平面直角坐標(biāo)系中畫出梯形A1B1C1D1

(2)以點(diǎn)C1為旋轉(zhuǎn)中心,把(1)中畫出的梯形繞點(diǎn)C1順時(shí)針方向旋轉(zhuǎn) 得到梯形A2B2C2D2 ,請(qǐng)你畫出梯形A2B2C2D2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1, O為正方形ABCD的中心,分別延長(zhǎng)OA,OD到點(diǎn)F,E,使OF=2OA,OE=2OD,連接EF,將FOE繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)角α得到FOE,連接AE,BF(如圖2).

1探究AEBF的數(shù)量關(guān)系,并給予證明;

2當(dāng)α=30°時(shí),求證: AOE為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠α和∠β互補(bǔ),且∠α<∠β,下列表達(dá)式:①90°﹣α;②∠β﹣90°;β+∠α);β﹣α)中,等于∠α的余角的式子有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線,交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.

(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD,BE分別是ABC的中線和角平分線,ADBE于點(diǎn)G,ADBE6,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD平分∠ABC. 請(qǐng)補(bǔ)全圖形后,依條件完成解答.

(1)在直線BC下方畫∠CBE,使∠CBE與∠ABC互補(bǔ);

(2)在射線BE上任取一點(diǎn)F,過點(diǎn)F畫直線FGBDBC于點(diǎn)G;

(3)判斷∠BFG與∠BGF的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案