【題目】如圖,OB為∠AOC內(nèi)一條射線,∠AOB的余角是它自身的兩倍.

1)求∠AOB的度數(shù);

2)射線OEOA開(kāi)始,在∠AOB內(nèi)以1°/s的速度繞著O點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn),轉(zhuǎn)到OB停止,同時(shí)射線OF在∠BOC內(nèi)從OB開(kāi)始以3°/s的速度繞O點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)轉(zhuǎn)到OC停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

①若OEOF運(yùn)動(dòng)的任一時(shí)刻,均有∠COF3BOE,求∠AOC的度數(shù);

OP為∠AOC內(nèi)任一射線,在①的條件下,當(dāng)t10時(shí),以OP為邊所有角的度數(shù)和的最小值為   

【答案】(1)30°;(2)①120°,②170°.

【解析】

1)根據(jù)余角的定義列方程解答即可;

2)①分別用t的代數(shù)式表示出∠AOE、∠BOF,∠BOE,根據(jù)∠COF3BOE列方程解答即可;

②當(dāng)OPOB重合時(shí),以OP為邊所有角的度數(shù)和的有最小值,把t10代入計(jì)算即可.

解:(1)設(shè)∠AOBx,則∠AOB的余角=(90x,

依題意有:∴90x2x,

x30

∴∠AOB30°

2)①∵運(yùn)動(dòng)時(shí)間為t秒,則

AOEt°,∠BOF3t°,∠BOE=(30t°

COF=∠AOC﹣∠AOB﹣∠BOF,

設(shè)∠AOCy°,

又∵∠COF3BOE,

則有:y303t330t),

解得:y120,

∴∠AOC120°

②當(dāng)OPOB重合時(shí),以OP為邊所有角的度數(shù)和的有最小值,

當(dāng)t10時(shí),以OP為邊所有角的度數(shù)和的最小值為170°

故答案為:170°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)生參加植樹(shù)造林,甲班每天比乙班多植5棵樹(shù),甲班植80棵樹(shù)與乙班植70棵樹(shù)所用的天數(shù)相等,求甲、乙兩班每天各植樹(shù)多少棵。下面列式錯(cuò)誤的是

A.設(shè)甲班每天植樹(shù)x棵,則B.設(shè)乙班每天植樹(shù)x棵,則

C.設(shè)甲班在x天植樹(shù)80棵,則D.設(shè)乙班在x天植樹(shù)70棵,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ADBE是高,∠ABE=45°,點(diǎn)FAB的中點(diǎn),ADFE,BE分別交于點(diǎn)G、H.有下列結(jié)論:①FD=FE;AH=2CD;BCAD=AE2;SABC=2SADF.其中正確結(jié)論的序號(hào)是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,以每袋標(biāo)準(zhǔn)質(zhì)量45克為標(biāo)準(zhǔn),檢測(cè)每袋的質(zhì)量是否符合該標(biāo)準(zhǔn),超過(guò)或不足的克數(shù)分別用正、負(fù)數(shù)來(lái)表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差值(單位:克)

5

3

0

1

2

5

袋數(shù)

1

3

6

4

5

1

回答下列問(wèn)題:

1)這20袋樣品中,完全符合每袋標(biāo)準(zhǔn)質(zhì)量45克的有   袋;

2)這批樣品的總質(zhì)量是多少克?(要求寫出算式).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykx+b的圖象經(jīng)過(guò)點(diǎn)A(﹣26),且與x軸相交于點(diǎn)B,與正比例函數(shù)y3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1

1)求一次函數(shù)ykx+b的解析式;

2)若點(diǎn)Dy軸負(fù)半軸上,且滿足SCODSBOC,請(qǐng)直接寫出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了落實(shí)黨的“精準(zhǔn)扶貧”政策,A.,B兩城決定向CD兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A,B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C,D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20/噸和25/噸;從B城往C, D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15/噸和24/噸。現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.

(1)A城和B城各有多少噸肥料?

(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求出最少總運(yùn)費(fèi).

(3)由于更換車型,使A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,這時(shí)怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉行知識(shí)大賽,A校、B校各派出5名選手組成代表隊(duì)參加決賽,兩校派出選手的決賽成績(jī)?nèi)鐖D所示.

(1)根據(jù)圖示填寫下表:

平均數(shù)/

中位數(shù)/

眾數(shù)/

A

______

85

______

B

85

______

100

(2)結(jié)合兩校成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)學(xué)校的決賽成績(jī)較好;

(3)計(jì)算兩校決賽成績(jī)的方差,并判斷哪個(gè)學(xué)校代表隊(duì)選手成績(jī)較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)y=ax2+2ax﹣4(a≠0)的圖象與x軸交于點(diǎn)A,B(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于點(diǎn)C,ABC的面積為12.

(1)求二次函數(shù)圖象的對(duì)稱軸與它的解析式;

(2)點(diǎn)Dy軸上,當(dāng)以A、O、D為頂點(diǎn)的三角形與BOC相似時(shí),求點(diǎn)D的坐標(biāo);

(3)點(diǎn)D的坐標(biāo)為(﹣2,1),點(diǎn)P在二次函數(shù)圖象上,∠ADP為銳角,且tanADP=2,求點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸的原點(diǎn)為O,點(diǎn)AB、C是數(shù)軸上的三點(diǎn),點(diǎn)B對(duì)應(yīng)的數(shù)為1AB8,BC3,動(dòng)點(diǎn)P、Q同時(shí)從A、C出發(fā),分別以每秒2個(gè)長(zhǎng)度單位和每秒1個(gè)長(zhǎng)度單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0

1)求點(diǎn)A、C分別對(duì)應(yīng)的數(shù);

2)求點(diǎn)P、Q分別對(duì)應(yīng)的數(shù);(用含t的式子表示)

3)試問(wèn)當(dāng)t為何值時(shí),OPOQ?

查看答案和解析>>

同步練習(xí)冊(cè)答案