【題目】今年9月28日,某中學(xué)初三年級同學(xué)進(jìn)行了中招體育模擬考試,王老師為了更加科學(xué)有效地制定后期訓(xùn)練計(jì)劃,對本班同學(xué)的體考成績進(jìn)行了統(tǒng)計(jì),并繪制了如圖的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,其中體育成績共分為五個等級:A:46分﹣50分;B:41分﹣45分C:36分﹣40分;D:31分﹣35分;E:30分及以下,請根據(jù)圖中所給的信息完成下列問題:
(1)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整:并計(jì)算扇形統(tǒng)計(jì)圖中E等級所對應(yīng)的圓心角度數(shù)為 .
(2)該班A等級中共有5名同學(xué)獲得滿分,其中男同學(xué)只有2名,現(xiàn)從這5名同學(xué)中任選2名同學(xué)在班上進(jìn)行經(jīng)驗(yàn)交流,請用樹狀圖或列表法求恰好選到一名男同學(xué)和一名女同學(xué)的概率.
【答案】(1)24°;(2) ,見解析.
【解析】
(1)先由A等級人數(shù)及其百分比求得總?cè)藬?shù),再用總?cè)藬?shù)減去A,B,D,E四等級人數(shù)求得C等級的人數(shù),據(jù)此可補(bǔ)全條形圖,用360°乘以E等級人數(shù)占總?cè)藬?shù)的比例可得其圓心角度數(shù);
(2)利用樹狀圖法,根據(jù)概率公式即可求解.
解:(1)∵被抽查的學(xué)生總?cè)藬?shù)為15÷25%=60(名),
∴C等級的學(xué)生數(shù)為60﹣(15+20+8+4)=13(名),
補(bǔ)全條形圖如下:
扇形統(tǒng)計(jì)圖中E等級所對應(yīng)的圓心角度數(shù)為360°×=24°,
故答案為:24°;
(2)如圖所示:
由樹狀圖知共有20種等可能結(jié)果,其中一男一女的有12種結(jié)果,
∴恰好選到一名男同學(xué)和一名女同學(xué)的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象相交于A、B兩點(diǎn)且點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)B的坐標(biāo)(﹣1,n).
(1)分別求兩個函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行手工制作比賽,賽后整理參賽同學(xué)的成績,并制作成圖表如下:
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x<100 | 20 | 0.1 |
請根據(jù)以上圖表提供的信息,解答下列問題:
(1)表中m和n所表示的數(shù)分別為:m=______,n=______,
(2)請?jiān)趫D中,補(bǔ)全頻數(shù)分布直方圖;
(3)比賽成績的中位數(shù)落在哪個分?jǐn)?shù)段?
(4)如果比賽成績80分以上(含80分)可以獲得獎勵,那么獲獎率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列條件中不能判定這兩個三角形相似的是( )
A. ∠A=55°,∠D=35°
B. AC=9,BC=12,DF=6,EF=8
C. AC=3,BC=4,DF=6,DE=8
D. AB=10,AC=8,DE=15,EF=9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有1個三角形,第②個圖案中有4個三角形,第③個圖案中有8個三角形,…,按此規(guī)律排列下去,則第⑦個圖案中三角形的個數(shù)為( 。
A. 15B. 17C. 19D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=與x軸交于A,B兩點(diǎn),交y軸于點(diǎn)C,連接BC.過點(diǎn)A作BC的平行線交拋物線于點(diǎn)D.
(1)求△ABC的面積;
(2)已知點(diǎn)M是拋物線的頂點(diǎn),在直線AD上有一動點(diǎn)E,x軸上有一動點(diǎn)F,當(dāng)ME+BE最小時,求|CF﹣EF|的最大值及此時點(diǎn)F的坐標(biāo);
(3)如圖2,在y軸正半軸上取點(diǎn)Q,使得CB=CQ,點(diǎn)P是x軸上一動點(diǎn),連接PC,將△CPQ沿PC折疊至△CPQ′.連接BQ,BQ′,QQ′,當(dāng)△BQQ′為等腰三角形時,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AC為直徑作⊙O交AB、BC于E、D,D恰為BC的中點(diǎn),過C作⊙O的切線,與AB的延長線交于F,過B作BM⊥AF,交CF于M.
(1)求證:MB=MC;
(2)若MF=5,MB=3,求⊙O的半徑及弦AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=-1,有以下結(jié)論:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>0.其中正確的結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖⊙O的半徑為1,過點(diǎn)A(2,0)的直線切⊙O于點(diǎn)B,交y軸于點(diǎn)C.
(1)求線段AB的長;
(2)求以直線AC為圖象的一次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com