【題目】在Rt△ABC,∠C=90°,D為AB邊上一點(diǎn),點(diǎn)M、N分別在BC、AC邊上,且DM⊥DN.作MF⊥AB于點(diǎn)F,NE⊥AB于點(diǎn)E.
(1)特殊驗(yàn)證:如圖1,若AC=BC,且D為AB中點(diǎn),求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如圖2,若D為AB中點(diǎn),(1)中的兩個(gè)結(jié)論有一個(gè)仍成立,請(qǐng)指出并加以證明;
②如圖3,若BD=kAD,條件中“點(diǎn)M在BC邊上”改為“點(diǎn)M在線段CB的延長(zhǎng)線上”,其它條件不變,請(qǐng)?zhí)骄緼E與DF的數(shù)量關(guān)系并加以證明.
【答案】
(1)證明:若AC=BC,則△ABC為等腰直角三角形,
如答圖1所示,連接CD,則CD⊥AB,又∵DM⊥DN,∴∠1=∠2.
在△AND與△CMD中,
∴△AND≌△CMD(ASA),
∴DN=DM.
∵∠4+∠1=90°,∠1+∠3=90°,∴∠4=∠3,
∵∠1+∠3=90°,∠3+∠5=90°,∴∠1=∠5,
在△NED與△DFM中,
∴△NED≌△DFM(ASA),
∴NE=DF.
∵△ANE為等腰直角三角形,∴AE=NE,∴AE=DF
(2)①答:AE=DF.
證法一:由(1)證明可知:△DEN∽△MFD
∴ ,即MFEN=DEDF.
同理△AEN∽△MFB,
∴ ,即MFEN=AEBF.
∴DEDF=AEBF,
∴(AD﹣AE)DF=AE(BD﹣DF),
∴ADDF=AEBD,∴AE=DF.
證法二:如答圖2所示,過(guò)點(diǎn)D作DP⊥BC于點(diǎn)P,DQ⊥AC于點(diǎn)Q.
∵D為AB中點(diǎn),
∴DQ=PC=PB.
易證△DMF∽△NDE,∴ ,
易證△DMP∽△DNQ,∴ ,
∴ ;
易證△AEN∽△DPB,∴ ,
∴ ,∴AE=DF.
②答:DF=kAE.
證法一:由①同理可得:DEDF=AEBF,
∴(AE﹣AD)DF=AE(DF﹣BD)
∴ADDF=AEBD
∵BD=kAD
∴DF=kAE.
證法二:如答圖3,過(guò)點(diǎn)D作DP⊥BC于點(diǎn)P,DQ⊥AC于點(diǎn)Q.
易證△AQD∽△DPB,得 ,即PB=kDQ.
由①同理可得: ,
∴ ;
又∵ ,
∴ ,
∴DF=kAE
【解析】(1)連接CD,首先證明△AND≌△CMD,依據(jù)全等三角形的性質(zhì)可得到DN=DM,然后再證明△NED≌△DFM,從而可得到DF=NE,然后依據(jù)等腰三角形的性質(zhì)可得到AE=NE=DF;
(2)①若D為AB中點(diǎn),則△DEN∽△MFD,△AEN∽△MFB,然后依據(jù)相似三角形的性質(zhì)列出比例式,接下來(lái),由線段比例關(guān)系可以證明AE=DF結(jié)論依然成立;②若BD=kAD,證明思路與①類似.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解相似三角形的判定與性質(zhì)(相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的內(nèi)角∠DCB與外角∠ABE的平分線相交于點(diǎn)F.
(1)若BF∥CD,∠ABC=80°,求∠DCB的度數(shù);
(2)已知四邊形ABCD中,∠A=105,∠D=125,求∠F的度數(shù);
(3)猜想∠F、∠A、∠D之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為建設(shè)京西綠色走廊,改善永定河水質(zhì),某治污公司決定購(gòu)買10臺(tái)污水處理設(shè)備.現(xiàn)有A、B兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格與月處理污水量如下表:
經(jīng)調(diào)查:購(gòu)買一臺(tái)A型設(shè)備比購(gòu)買一臺(tái)B型設(shè)備多2萬(wàn)元,購(gòu)買2臺(tái)A型設(shè)備比購(gòu)買3臺(tái)B型設(shè)備少6萬(wàn)元.
(1)求x、y的值;
(2)如果治污公司購(gòu)買污水處理設(shè)備的資金不超過(guò)105萬(wàn)元,求該治污公司有哪幾種購(gòu)買方案;
(3)在(2)的條件下,如果月處理污水量不低于2040噸,為了節(jié)約資金,請(qǐng)為該公司設(shè)計(jì)一種最省錢的購(gòu)買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮分別從甲地和乙地同時(shí)出發(fā),沿同一條路相向而行,小明開(kāi)始跑步,中途改為步行,到達(dá)乙地恰好用小亮騎自行車以的速度直接到甲地,兩人離甲地的路程與各自離開(kāi)出發(fā)地的時(shí)間之間的函數(shù)圖象如圖所示,
甲、乙兩地之間的路程為______m,小明步行的速度為______;
求小亮離甲地的路程y關(guān)于x的函數(shù)表達(dá)式,并寫(xiě)出自變量x的取值范圍;
求兩人相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解學(xué)生對(duì)新聞、體育、動(dòng)畫(huà)、娛樂(lè)、戲曲五類電視節(jié)目最喜愛(ài)的情況,隨機(jī)調(diào)查了若干名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)進(jìn)行整理,繪制了如下的不完整統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)以上的信息,回答下列問(wèn)題:
(1)本次共調(diào)查了名學(xué)生,其中最喜愛(ài)戲曲的有人;在扇形統(tǒng)計(jì)圖中,最喜愛(ài)體育的對(duì)應(yīng)扇形的圓心角大小是 .
(2)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛(ài)新聞的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有甲、乙兩個(gè)長(zhǎng)方形,它們的邊長(zhǎng)如圖所示(m為正整數(shù)),面積分別為S1、S2.
(1)請(qǐng)比較S1與S2的大小: S1 S2;
(2)若一個(gè)正方形與甲的周長(zhǎng)相等.
①求該正方形的邊長(zhǎng)(用含m的代數(shù)式表示);
②若該正方形的面積為S3,試探究:S3與S1的差(即S3﹣S1)是否為常數(shù)?若為常數(shù),求出這個(gè)常數(shù);如果不是,請(qǐng)說(shuō)明理由;
(3)若滿足條件0<n<|S1﹣S2|的整數(shù)n有且只有8個(gè),直接寫(xiě)出m的值并分別求出S1與S2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列一組圖形中點(diǎn)的個(gè)數(shù),其中第1個(gè)圖中共有4個(gè)點(diǎn),第2個(gè)圖中共有10個(gè)點(diǎn),第3個(gè)圖中共有19個(gè)點(diǎn),…,按此規(guī)律第100個(gè)圖中共有點(diǎn)的個(gè)數(shù)是
A. 15151B. 15152C. 15153D. 15154
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過(guò)程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問(wèn)題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請(qǐng)直接寫(xiě)出因式分解的最后結(jié)果_________ .
(3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=m (x﹣1)( x﹣4)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),頂點(diǎn)為C,將該二次函數(shù)的圖象關(guān)于x軸翻折,所得圖象的頂點(diǎn)為D.若四邊形ACBD為正方形,則m的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com