【題目】某學(xué)校為了解學(xué)生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機調(diào)查了若干名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)進行整理,繪制了如下的不完整統(tǒng)計圖.
請你根據(jù)以上的信息,回答下列問題:
(1)本次共調(diào)查了名學(xué)生,其中最喜愛戲曲的有人;在扇形統(tǒng)計圖中,最喜愛體育的對應(yīng)扇形的圓心角大小是 .
(2)根據(jù)以上統(tǒng)計分析,估計該校2000名學(xué)生中最喜愛新聞的人數(shù).
【答案】
(1)50,3,72°
(2)解:2000×8%=160(人),
答:估計該校2000名學(xué)生中最喜愛新聞的人數(shù)約有160人.
【解析】解:(1)本次共調(diào)查學(xué)生:4÷8%=50(人),最喜愛戲曲的人數(shù)為:50×6%=3(人);
∵“娛樂”類人數(shù)占被調(diào)查人數(shù)的百分比為: ×100%=36%,
∴“體育”類人數(shù)占被調(diào)查人數(shù)的百分比為:1﹣8%﹣30%﹣36%﹣6%=20%,
∴在扇形統(tǒng)計圖中,最喜愛體育的對應(yīng)扇形的圓心角大小是360°×20%=72°;
(2)2000×8%=160(人),
答:估計該校2000名學(xué)生中最喜愛新聞的人數(shù)約有160人.
故答案為:(1)50,3,72°;(2)160.
(1)由條形統(tǒng)計圖可得到喜歡新聞的頻數(shù),由扇形統(tǒng)計圖可得到喜歡新聞的百分比,然后依據(jù)總?cè)藬?shù)=頻數(shù)÷百分比求解即可,依據(jù)頻數(shù)=總數(shù)×百分比可求得喜歡戲曲的人數(shù),最后依據(jù)圓心角=360°×百分比求解即可;
(2)用全校的人數(shù)×喜歡新聞人數(shù)的百分比即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了擴大生產(chǎn),決定購買6臺機器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機器可供選擇.其中甲型機器每日生產(chǎn)零件106個,乙型機器每日生產(chǎn)零件60個,經(jīng)調(diào)査,購買3臺甲型機器和2臺乙型機器共需要31萬元,購買一臺甲型機器比購買一臺乙型機器多2萬元.
(1)求甲、乙兩種機器每臺各多少萬元?
(2)如果工廠購買機器的預(yù)算資金不超過34萬元,那么你認為該工廠有哪幾種購買方案?
(3)在(2)的條件下,如果要求該工廠購進的6臺機器的日產(chǎn)量能力不能低于400個,那么為了節(jié)約資金.應(yīng)該選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過平移,△ABC移到△DEF的位置,如圖,下列結(jié)論:①AD=BE=CF,且AD∥BE∥CF;②AB∥DE,BC∥EF,BC=EF;③AB=DE,BC=EF,AC=DF.正確的有( 。
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種型號汽車油箱容量為40L,每行駛100km耗油10L.設(shè)一輛加滿油的該型號汽車行駛路程為x(km),行駛過程中油箱內(nèi)剩余油量為y(L)
(1)求y與x之間的函數(shù)表達式;
(2)為了有效延長汽車使用壽命,廠家建議每次加油時油箱內(nèi)剩余油量不低于油箱容量的四分之一,按此建議,求該輛汽車最多行駛的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,把∠α=60°的一個單獨的菱形稱作一個基本圖形,將此基本圖形不斷的復(fù)制并平移,使得下一個菱形的一個頂點與前一個菱形的中心重合,這樣得到圖②,圖③,…
(1)觀察圖形并完成表格:
圖形名稱 | 基本圖形的個數(shù) | 菱形的個數(shù) |
圖① | 1 | 1 |
圖② | 2 | 3 |
圖③ | 3 | 7 |
圖④ | 4 | |
… | … | … |
猜想:在圖n中,菱形的個數(shù)為 [用含有n(n≥3)的代數(shù)式表示];
(2)如圖,將圖n放在直角坐標系中,設(shè)其中第一個基本圖形的中心O1的坐標為(x1 , 1),則x1=;第2017個基本圖形的中心O2017的坐標為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC,∠C=90°,D為AB邊上一點,點M、N分別在BC、AC邊上,且DM⊥DN.作MF⊥AB于點F,NE⊥AB于點E.
(1)特殊驗證:如圖1,若AC=BC,且D為AB中點,求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如圖2,若D為AB中點,(1)中的兩個結(jié)論有一個仍成立,請指出并加以證明;
②如圖3,若BD=kAD,條件中“點M在BC邊上”改為“點M在線段CB的延長線上”,其它條件不變,請?zhí)骄緼E與DF的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) yl= x ( x ≥0 ) , ( x > 0 )的圖象如圖所示,則結(jié)論: ① 兩函數(shù)圖象的交點A的坐標為(3 ,3 ) ② 當 x > 3 時, ③ 當 x =1時, BC = 8
④ 當 x 逐漸增大時, yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結(jié)論的序號是_ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為支援災(zāi)區(qū),某校愛心活動小組準備用籌集的資金購買A、B兩種型號的學(xué)習用品共1000件.已知B型學(xué)習用品的單價比A型學(xué)習用品的單價多10元,用180元購買B型學(xué)習用品的件數(shù)與用120元購買A型學(xué)習用品的件數(shù)相同.
(1)求A、B兩種學(xué)習用品的單價各是多少元?
(2)若購買這批學(xué)習用品的費用不超過28000元,則最多購買B型學(xué)習用品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,則∠BED的度數(shù)為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com