【題目】如圖,在邊長為1個(gè)單位長度的小正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知的頂點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為.
(1)求的面積;
(2)若把向上平移3個(gè)單位長度,再向左平移6個(gè)單位長度得到,請(qǐng)畫出;
(3)若點(diǎn)在軸上,且的面積與的面積相等,請(qǐng)直接寫出點(diǎn)的坐標(biāo).
【答案】(1);(2)見解析;(3)點(diǎn)的坐標(biāo)是或
【解析】
(1)利用三角形面積公式計(jì)算;
(2)利用點(diǎn)平移的坐標(biāo)變換規(guī)律寫出A′、B′、C′的坐標(biāo),然后描點(diǎn)即可;
(3)設(shè)P(0,t),根據(jù)三角形面積公式得到×3×|t+1|=,然后求出t即可得到P點(diǎn)坐標(biāo).
解:(1)的面積等于.
(2)畫出的如圖所示:
(3)設(shè)P(0,t),
∵△PA′B′的面積與△ABC的面積相等,
∴×3×|t+1|=,解得t=2或t=-4,
∴P點(diǎn)坐標(biāo)為(0,2)或(0,-4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃組織師生共435人參加一次大型公益活動(dòng),如果租用5輛小客車和6輛大客車恰好全部坐滿,已知每輛大客車的乘客座位數(shù)比小客車多12個(gè).
(1) 求每輛小客車和每輛大客車的乘客座位數(shù);
(2) 由于最后參加活動(dòng)的人數(shù)增加了20人,學(xué)校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,為將所有參加活動(dòng)的師生裝載完成,求租用小客車數(shù)量的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E在AB邊上,沿CE折疊矩形ABCD,使點(diǎn)B落在AD邊上的點(diǎn)F處,若AB=4,BC=5,則tan∠AFE的值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,D是△ABC的BC邊的中點(diǎn),DE⊥AC,DF⊥AB,垂足分別是E、F,且BF=CE
求證:(1)△ABC是等腰三角形
(2)當(dāng)∠A=90°時(shí),試判斷四邊形AFDE是怎樣的四邊形,證明你的結(jié)論
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點(diǎn)M、N,點(diǎn)P在AB的延長線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線;
(2)若BC=2,sin∠BCP=,求⊙O的半徑及△ACP的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)垃圾進(jìn)行分類投放,能有效提高對(duì)垃圾的處理和再利用,減少污染,保護(hù)環(huán)境.為了調(diào)查同學(xué)們對(duì)垃圾分類知識(shí)的了解程度,增強(qiáng)同學(xué)們的環(huán)保意識(shí),普及垃圾分類及投放的相關(guān)知識(shí),某校數(shù)學(xué)興趣小組的同學(xué)設(shè)計(jì)了“垃圾分類知識(shí)及投放情況”問卷,并在本校隨機(jī)抽取部分同學(xué)進(jìn)行問卷測(cè)試,把測(cè)試成績分成“優(yōu)、良、中、差”四個(gè)等級(jí),繪制了如下不完整的統(tǒng)計(jì)圖:
根據(jù)以上統(tǒng)計(jì)信息,解答下列問題:
(1)求成績是“優(yōu)”的人數(shù)占抽取人數(shù)的百分比;
(2)求本次隨機(jī)抽取問卷測(cè)試的人數(shù);
(3)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校學(xué)生人數(shù)為3000人,請(qǐng)估計(jì)成績是“優(yōu)”和“良”的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠A=∠AGE,∠D=∠DGC
(1)求證:AB∥CD;
(2)若∠1+∠2=180°,求證:∠BEC+∠B=180°;
(3)在(2)的基礎(chǔ)上,若∠BEC=2∠B+30°,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接五一國際勞動(dòng)節(jié),某校團(tuán)委組織了“勞動(dòng)最光榮”有獎(jiǎng)?wù)魑幕顒?dòng),并設(shè)立了一、二、三等獎(jiǎng).學(xué)校計(jì)劃派人根據(jù)設(shè)獎(jiǎng)情況買50件獎(jiǎng)品,其中二等獎(jiǎng)件數(shù)比一等獎(jiǎng)件數(shù)的2倍還少10件,三等獎(jiǎng)所花錢數(shù)不超過二等獎(jiǎng)所花錢數(shù)的1.5倍.各種獎(jiǎng)品的單價(jià)如下表所示.如果計(jì)劃一等獎(jiǎng)買x件,買50件獎(jiǎng)品的總錢數(shù)是w元.
(1)求w與x的函數(shù)關(guān)系式及自變量的取值范圍;
(2)請(qǐng)你計(jì)算一下,如何購買這三種獎(jiǎng)品所花的總錢數(shù)最少?最少是多少元?
一等獎(jiǎng) | 二等獎(jiǎng) | 三等獎(jiǎng) |
12元 | 10元 | 5元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD是由六個(gè)正方形組成的完美長方形,中間最小正方形的面積是1,最大正方形的邊長為x.
(1)用x的代數(shù)式表示長方形ABCD的長是______或______、寬是______;
(2)求長方形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com