【題目】如圖,一個點從數(shù)軸上的原點開始,先向右移動了3個單位長度,再向左移動 5 個單位長度,可以看到終點表示的數(shù)是 .已知點、是數(shù)軸上的點,完成下列各題:

1)如果點表示數(shù)- 3,將點向右移動 7 個單位長度,那么終點表示的數(shù)是 、兩點間的距離是

2)如果點表示數(shù)是3,將點向左移動 7 個單位長度,再向右移動5 個單位長度,那么終點表示的數(shù)是 , 兩點間的距離是

3)一般地,如果點表示數(shù)為,將點向右移動個單位長度,再向左移動個單位長度,那么請你猜想終點表示的數(shù)是 ,、兩點間的距離是

【答案】147;(21,2;(3a+b-c,.

【解析】

1)(2)根據(jù)圖形可直接的得出結(jié)論;
3)先求出B點表示的數(shù),然后由數(shù)軸上兩點間的距離公式:兩點間的距離是兩點所表示的數(shù)差的絕對值,計算即可.

解:(1)由圖可知,點A表示數(shù)-3,將點A向右移動7個單位長度,那么終點B表示的數(shù)是4,
A、B兩點間的距離是|-3-4|=7
故答案為:4,7;
2)如果點A表示數(shù)3,將點A向左移動7個單位長度,則點A表示3-7=-4,
再向右移動5個單位長度,那么終點B表示的數(shù)是-4+5=1,
A、B兩點間的距離是|3-1|=2;
故答案為:1,2;
3)點A表示數(shù)為a,將點A向右移動b個單位長度,則點A表示a+b,再向左移動c個單位長度,那么終點B表示的數(shù)是a+b-c,
A、B兩點間的距離是|a+b-c-a|=|b-c|
故答案為:a+b-c,|b-c|

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,六邊形ABCDEF的內(nèi)角都相等, ,則下列結(jié)論成立的個數(shù)是

; ; ; 四邊形ACDF是平行四邊形; 六邊形ABCDEF既是中心對稱圖形,又是軸對稱圖形.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形 ABCD 的邊長為 5,點 M 是邊 BC 上的點,DE⊥AM 于點 E,BF∥DE,交 AM 于點 F.若E AF 的中點,則 DE 的長為(

A.B.2C.4D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上的A,B,C三點所表示的數(shù)分別為a,b,c,其中AB=BC.如果,那么該數(shù)軸的原點O的位置應該在(

A.A的左邊

B.A與點B之間

C.B與點C之間(靠近點B)

D.C的右邊

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OABCAB、AC的延長線及BC邊相切,且ACB=90°A,B,C所對的邊長依次為3,45,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某人用如下方法測一鋼管的內(nèi)徑:將一小段鋼管豎直放在平臺上.向內(nèi)放入兩個半徑為5 cm的鋼球,測得上面一個鋼球的最高點到底面的距離DC16 cm(鋼管的軸截面如圖所示),則鋼管的內(nèi)徑AD的長為_______cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列條件中能判定四邊形ABCD是平行四邊形的是(  )

A.AB,CDB.ABAD,CBCD

C.ABCD,ADBCD.ABCDADBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,∠ACO90°,∠AOC30°,分別以AOCO為邊向外作等邊三角形AOD和等邊三角形COE,DFAOF,連DEAOG

1)求證:DFG≌△EOG;

2HAD的中點,連HG,求證:CD2HG;

3)在(2)的條件下,AC4,若MAC的中點,求MG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,四邊形OABC是正方形,點A,C的坐標分別為(2,0),(0,2),D是x軸正半軸上的一點(點D在點A的右邊),以BD為邊向外作正方形BDEF(E,F(xiàn)兩點在第一象限),連接FC交AB的延長線于點G.若反比例函數(shù)的圖象經(jīng)過點E,G兩點,則k的值為 ______________

查看答案和解析>>

同步練習冊答案