【題目】如圖,已知△ABC
(1)用直尺和圓規(guī),作出BC邊上的中線AD(不寫(xiě)作法,保留作圖痕跡);
(2)若AD=BC,證明△ABC是直角三角形.
【答案】見(jiàn)解析
【解析】
試題分析:(1)作BC的垂直平分線交BC于D,連結(jié)AD,則AD為BC邊上的中線;
(2)易得AD=BD=CD,則∠B=∠BAD,∠C=∠CAD,利用三角形內(nèi)角和得到∠BAD+∠BAC+∠CAD=180°,則可計(jì)算出∠BAC=90°,于是可判斷△ABC是直角三角形.
(1)解:如圖,AD為所作;
(2)證明:∵AD是BC邊上的中線,且AD=BC,
∴AD=BD=CD,
∴∠B=∠BAD,∠C=∠CAD,
又∵∠B+∠BAC+∠C=180°,
∴∠BAD+∠BAC+∠CAD=180°,
即2∠BAC=180°,
∴∠BAC=90°,
即△ABC是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題
情景:
試根據(jù)圖中的信息,解答下列問(wèn)題:
(1)購(gòu)買(mǎi)6根跳繩需___________元,購(gòu)買(mǎi)12根跳繩需_____________元.
(2)小紅比小明多買(mǎi)2根,付款時(shí)小紅反而比小明少5元,你認(rèn)為有這種可能嗎?若有,請(qǐng)求出小紅購(gòu)買(mǎi)跳繩的根數(shù);若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=105°,AE的垂直平分線MN交BE于點(diǎn)C,且AB+BC=BE,則∠B的度數(shù)是( )
A.45° B.60° C.50° D.55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組條件中,能判斷兩個(gè)直角三角形全等的是( )
A. 兩組直角邊對(duì)應(yīng)相等
B. 一組邊對(duì)應(yīng)相等
C. 兩組銳角對(duì)應(yīng)相等
D. 一組銳角對(duì)應(yīng)相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題:
(1)(+45)+(﹣92)+35+(﹣8);
(2);
(3)﹣24+|4﹣6|﹣3÷(﹣1)2014;
(4)化簡(jiǎn):3ab﹣a2﹣2ba﹣3a2;
(5)先化簡(jiǎn)后求值:,其中.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D在BC邊上,點(diǎn)E在AC邊上,且∠ADE=60°.
(1)求證:△ABD∽△DCE.
(2)若AB=9cm,BD=3cm,求EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在Rt△ABC中,∠C=90°,點(diǎn)D是線段CA延長(zhǎng)線上一點(diǎn),且AD=AB.點(diǎn)F是線段AB上一點(diǎn),連接DF,以DF為斜邊作等腰Rt△DFE,連接EA,EA滿足條件EA⊥AB.
(1)若∠AEF=20°,∠ADE=50°,AC=2,求AB的長(zhǎng)度;
(2)求證:AE=AF+BC;
(3)如圖2,點(diǎn)F是線段BA延長(zhǎng)線上一點(diǎn),探究AE、AF、BC之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周口體育局要組織一次籃球賽,賽制為單循環(huán)形式(每?jī)申?duì)之間都賽一場(chǎng)),計(jì)劃安排28場(chǎng)比賽,應(yīng)邀請(qǐng)多少支球隊(duì)參加比賽?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com