【題目】計算:
(1)tan30°sin60°+cos230°﹣sin245°cos60°
(2) ﹣|﹣3|+( 2﹣4cos30°.

【答案】
(1)解:原式= × + × =1
(2)解:原式=2 ﹣3+4﹣2 =1
【解析】(1)原式利用特殊角的三角函數(shù)值計算即可得到結(jié)果;(2)原式利用二次根式性質(zhì),絕對值的代數(shù)意義,負整數(shù)指數(shù)冪法則,以及特殊角的三角函數(shù)值計算即可得到結(jié)果.
【考點精析】解答此題的關(guān)鍵在于理解整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識,掌握aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)),以及對特殊角的三角函數(shù)值的理解,了解分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=45°,AB=4cm,將△ABC繞點B按逆時針方向旋轉(zhuǎn)45°后得到△A′BC′,則陰影部分的面積為 ___________cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設(shè)運動時間為t秒.

(1)填空:點A坐標為 ;拋物線的解析式為

(2)在圖1中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?

(3)在圖2中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分.

(1)圖中∠AOC的對頂角為________,BOE的補角為________;

(2)若∠AOC75°,且∠BOE∶∠EOD14,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2+2x+3x軸的兩交點間的距離是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用一根20m長的繩子圍成一個面積為24m2矩形,則矩形的長與寬分別是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖,小東在教學樓距地面9米高的窗口C處,測得正前方旗桿頂部A點的仰角為37°,旗桿底部B點的俯角為45°,升旗時,國旗上端懸掛在距地面2.25米處,若國旗隨國歌聲冉冉升起,并在國歌播放45秒結(jié)束時到達旗桿頂端,則國旗應(yīng)以多少米/秒的速度勻速上升?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】杭州市從日開始實行階梯電價制,居民上生活用電價格方案如下:(本題不考慮峰谷電)

檔次

全年的用電量

電價(單位:元/度)

第一檔

度以內(nèi)(包括度)

第二檔

度(包含度)

第三檔

度以上

)小王家年全年的用電量是度,請計算小王家這年的電費付了多少元?

)小李家月份這個月的用電量是度,小李算出它們家的電費是元,而供電局卻收了小李家的電費元,你知道其中的奧秘嗎?請你來解釋下.

)小張家年全年用電量為度,請用含的代數(shù)式表示小張家全年應(yīng)交的總電費,并把結(jié)果化簡.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若樣本1,2,3,x的平均數(shù)為5,又知樣本1,2,3,x,y的平均數(shù)為6,那么樣本1,2,3,x,y的方差是

查看答案和解析>>

同步練習冊答案