如圖,在等邊三角形ABC中,AD⊥BC于點(diǎn)D,以AD為一邊向右作等邊三角形ADE,DE與AC交于點(diǎn)F.
(1)試判斷DF與EF的數(shù)量關(guān)系,并給出理由.
(2)若CF的長(zhǎng)為2cm,試求等邊三角形ABC的邊長(zhǎng).
分析:(1)根據(jù)等邊三角形的每一個(gè)角都是60°可得∠BAC=∠DAE=60°,再根據(jù)等腰三角形三線合一的性質(zhì)求出BD=DC,∠BAD=∠DAC=30°,然后得到∠DAC=∠CAE,然后根據(jù)等腰三角形三線合一的性質(zhì)即可得證;
(2)求出∠CDF=30°,然后根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半解答即可.
解答:解:(1)DF=EF.
理由:∵△ABC和△ADE均是等邊三角形,
∴∠BAC=∠DAE=60°,
∵AD⊥BC,
∴BD=DC,∠BAD=∠DAC=
1
2
×60°=30°,
∴∠CAE=60°-30°=30°,
即∠DAC=∠CAE,
∴AC垂直平分DE,
∴DF=EF;

(2)在Rt△DFC中,∵∠FCD=60°,∠CFD=90°,
∴∠CDF=90°-60°=30°,
∵CF=2cm,
∴DC=4cm,
∴BC=2DC=2×4=8cm,
即等邊三角形ABC的邊長(zhǎng)為8cm.
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì),等腰三角形三線合一的性質(zhì),直角三角形30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等邊三角形ABC的邊BC、AC上分別取點(diǎn)D、E,使BD=CE,AD與BE相交于點(diǎn)P.則∠APE的度數(shù)為
 
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,在等邊三角形ABC中,三條中線AE,BD,CF相交于點(diǎn)O,則等邊三角形ABC中,從△BOF到△COD需要經(jīng)過(guò)的變換是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等邊三角形ABC中,BD⊥BC,過(guò)A作AD⊥BD于D,已知△ABC周長(zhǎng)為M,則AD=( 。
A、
M
2
B、
M
6
C、
M
8
D、
M
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊三角形ABC的AC邊上取中點(diǎn)D,BC的延長(zhǎng)線上取一點(diǎn)E,使CE=CD,求證:△BDE為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊三角形△ABC中,AQ=PQ,PR⊥AB于點(diǎn)R,PS⊥AC于點(diǎn)S,且PR=PS,下面給出的四個(gè)結(jié)論:①點(diǎn)P在∠A的平分線上,②AS=AR,③QP∥AR,④△BRP≌△QSP,則其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案