【題目】已知點(diǎn)A(4,3),B(9,3),將線段AB向下平移3個(gè)得到DC,其中點(diǎn)A與點(diǎn)D對(duì)應(yīng),點(diǎn)B與點(diǎn)C對(duì)應(yīng).
(1)畫(huà)出線段DC,并直接寫(xiě)出點(diǎn)D的坐標(biāo) ;
(2)連接AD和BC得到四邊形ABCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°后得到四邊形EFGD,點(diǎn)A與E對(duì)應(yīng),點(diǎn)B與點(diǎn)F對(duì)應(yīng),點(diǎn)C與點(diǎn)G對(duì)應(yīng).
①請(qǐng)畫(huà)出四邊形EFGD,并直接寫(xiě)出點(diǎn)F的坐標(biāo) ;
②連接DB、DF、BF,△ABC的面積是 .
【答案】(1)如圖,CD為所作,見(jiàn)解析;D點(diǎn)坐標(biāo)為(4,0);(2)①如圖,四邊形EFGD為所作,見(jiàn)解析;點(diǎn)F的坐標(biāo)為(1,5);②連線見(jiàn)解析,7.5.
【解析】
(1)根據(jù)題意得到坐標(biāo)軸位置,再利用平移的性質(zhì)作圖,然后根據(jù)圖形可寫(xiě)出D點(diǎn)的坐標(biāo);
(2)①利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫(huà)出A、B、C的對(duì)應(yīng)點(diǎn)E、F、G即可,然后根據(jù)圖形可寫(xiě)出F點(diǎn)的坐標(biāo);
②根據(jù)題意連線,然后利用三角形面積公式計(jì)算.
(1)如圖,DC為所作,D點(diǎn)坐標(biāo)為(4,0);
(2)①如圖,四邊形EFGD為所作,點(diǎn)F的坐標(biāo)為(1,5);
②如圖,S△ABC=×3×5=7.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小賢與小杰在探究某類(lèi)二次函數(shù)問(wèn)題時(shí),經(jīng)歷了如下過(guò)程:
求解體驗(yàn):
(1)已知拋物線y=﹣x2+bx﹣3經(jīng)過(guò)點(diǎn)(﹣1,0),則b= ,頂點(diǎn)坐標(biāo) ,該拋物線關(guān)于點(diǎn)(0,1)成中心對(duì)稱(chēng)的拋物線的表達(dá)式是 .
抽象感悟:
我們定義:對(duì)于拋物線y=ax2+bx+c(a≠0),以y軸上的點(diǎn)M(0,m)為中心,作該拋物線關(guān)于點(diǎn)M對(duì)稱(chēng)的拋物線y',則我們又稱(chēng)拋物線y'為拋物線y的“衍生拋物線”,點(diǎn)M為“衍生中心”.
(2)已知拋物線y=﹣x2﹣2x+5關(guān)于點(diǎn)(0,m)的衍生拋物線為y',若這兩條拋物線有交點(diǎn),求m的取值范圍.
問(wèn)題解決:
(3)已知拋物線y=ax2+2ax﹣b(a≠0)若拋物線y的衍生拋物線為y'=bx2﹣2bx+a2(b≠0),兩拋物線有兩個(gè)交點(diǎn),且恰好是它們的頂點(diǎn),求a,b的值及衍生中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+2x﹣3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),將這條拋物線向右平移m(m>0)個(gè)單位長(zhǎng)度,平移后的拋物線與x軸交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),若B,C是線段AD的三等分點(diǎn),則m的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(x+6)2=51
(2)x2﹣2x=2x﹣1
(3)x2﹣x=2
(4)x(x﹣7)=8(7﹣x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD內(nèi)接于⊙O,∠DAB=90°.
(Ⅰ)如圖1,連接BD,若⊙O的半徑為6,弧AD=弧AB,求AB的長(zhǎng);
(Ⅱ)如圖2,連接AC,若AD=5,AB=3,對(duì)角線AC平分∠DAB,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=120°,AB=AC=6,D為邊AB上一動(dòng)點(diǎn)(不與B點(diǎn)重合),連接CD,將線段CD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到DE,連接BE,則S△BDE的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系內(nèi)一點(diǎn)M(x,y)(x≠0),若則稱(chēng)k為點(diǎn)M的“傾斜比”,如圖,⊙B與y軸相切于點(diǎn)A,點(diǎn)B的坐標(biāo)為(3,5),點(diǎn)P為⊙B上的動(dòng)點(diǎn),則點(diǎn)P的“傾斜比”k的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時(shí)針旋轉(zhuǎn)45°得圖②,點(diǎn)P1是A1C與AB的交點(diǎn),點(diǎn)Q是A1B1與BC的交點(diǎn),求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時(shí)距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com