【題目】對(duì)實(shí)數(shù)a,b,定義運(yùn)算“*”為:a*b=
(1)求函數(shù)y=x*(2x﹣1)的解析式;
(2)若點(diǎn)A(x1,y1)、B(x2,y2)(x1<x2)在函數(shù)y=x*(2x﹣1)的圖象上,且A、B兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱,求點(diǎn)A的坐標(biāo);
(3)關(guān)于x的方程x*(2x﹣1)=m恰有三個(gè)互不相等的實(shí)數(shù)根x1,x2,x3,且x1<x2<x3,設(shè)t=x1+2x2+x3+x1x2x3,則t的取值范圍是 .
【答案】(1);(2)A(﹣1,﹣2);(3)﹣5+<t<-3
【解析】
(1)根據(jù)新定義的運(yùn)算的法則計(jì)算即可;
(2)由函數(shù)的圖象和A,B兩點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱,可知A點(diǎn)的橫坐標(biāo)為-1,再代入y=x2+2x﹣1中即可求出A的坐標(biāo);
(3)根據(jù)圖象分別求出三個(gè)實(shí)數(shù)根的取值范圍,然后利用圖象和根與系數(shù)的關(guān)系對(duì)t進(jìn)行化簡(jiǎn)即可得出t的取值范圍.
(1)當(dāng)x≥2x﹣1時(shí),即x≤1時(shí),x*(2x﹣1)=x2+2x﹣1,
當(dāng)x<2x﹣1時(shí),即x>1時(shí),x*(2x﹣1)=;
∴
(2)∵函數(shù)y=x*(2x﹣1)的圖象由拋物線,反比例函數(shù)各一部分構(gòu)成,
又∵A、B兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱,
∴ 結(jié)合圖象得x2=1,
∴
當(dāng)時(shí),
∴A(﹣1,﹣2);
(3)當(dāng)x2+2x﹣1=0時(shí),解得
由圖象可知,x1<﹣1﹣,﹣1+< x2<1,x3>1,
x2+2x﹣1=m,則 , =﹣m﹣1,
=m,則x3=,
∴t=x1+2x2+x3+x1x2x3=﹣2+x2++(﹣m﹣1)=x2-4,
∵﹣1+< x2<1
∴﹣5+<t<-3,
故答案為﹣5+<t<-3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長是4,點(diǎn)E是AB邊上一動(dòng)點(diǎn),連接CE,過點(diǎn)B作BG⊥CE于點(diǎn)G,點(diǎn)P是AB邊上另一動(dòng)點(diǎn),則PD+PG的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,BC∥OA,BC=3,OA=6,AB=3
(1)直接寫出點(diǎn)B的坐標(biāo)
(2)已知D.E分別為線段OC.OB上的點(diǎn),OD=5,OE=2BE,直線DE交x軸于點(diǎn)F,求直線DE的解析式
(3)在(2)的條件下,點(diǎn)M是直線DE上的一點(diǎn),在x軸上方是否存在另一個(gè)點(diǎn)N,使以O.D.M.N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】消費(fèi)者在某火鍋店飯后買單時(shí)可以參與一個(gè)抽獎(jiǎng)游戲,規(guī)則如下:有張紙牌,它們的背面都是小豬佩奇頭像,正面為張笑臉、張哭臉.現(xiàn)將張紙牌洗勻后背面朝上擺放到桌上,然后讓消費(fèi)者去翻紙牌.
(1)現(xiàn)小楊有一次翻牌機(jī)會(huì),若正面是笑臉的就獲獎(jiǎng),正面是哭臉的不獲獎(jiǎng),她從中隨機(jī)翻開一張紙牌,小楊獲獎(jiǎng)的概率是________.
(2)如糶小楊、小月都有翻兩張牌的機(jī)會(huì),小楊先翻一張,放回后再翻一張;小月同時(shí)翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎(jiǎng).他們誰獲獎(jiǎng)的機(jī)會(huì)更大些?通過畫樹狀圖或列表法分析說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是平行四邊形ABCD的對(duì)角線,DE⊥AB于點(diǎn)E,過點(diǎn)E的直線交BC于點(diǎn)G,且BG=CG.
(1)求證:GD=EG.
(2)若BD⊥EG垂足為O,BO=2,DO=4,畫出圖形并求出四邊形ABCD的面積.
(3)在(2)的條件下,以O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)△GDO,得到△G′D'O,點(diǎn)G′落在BC上時(shí),請(qǐng)直接寫出G′E的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)傳統(tǒng)文化,某校開展了“傳承經(jīng)典文化,閱讀經(jīng)典名著”活動(dòng).為了解七、八年級(jí)學(xué)生(七、八年級(jí)各有600名學(xué)生)的閱讀效果,該校舉行了經(jīng)典文化知識(shí)競(jìng)賽.現(xiàn)從兩個(gè)年級(jí)各隨機(jī)抽取20名學(xué)生的競(jìng)賽成績(百分制)進(jìn)行分析,過程如下:
收集數(shù)據(jù):
七年級(jí):79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年級(jí):92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數(shù)據(jù):
七年級(jí) | 0 | 1 | 0 | a | 7 | 1 |
八年級(jí) | 1 | 0 | 0 | 7 | b | 2 |
分析數(shù)據(jù):
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級(jí) | 78 | 75 | |
八年級(jí) | 78 | 80.5 |
應(yīng)用數(shù)據(jù):
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估計(jì)該校七、八兩個(gè)年級(jí)學(xué)生在本次競(jìng)賽中成績?cè)?/span>90分以上的共有多少人?
(3)你認(rèn)為哪個(gè)年級(jí)的學(xué)生對(duì)經(jīng)典文化知識(shí)掌握的總體水平較好,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=6,OB=8,OC=10,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO',下列結(jié)論:①△BO'A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為6;③∠AOB=150°;④S△BOC=12+6; ⑤S四邊形AOBO′=24+12.其中正確的結(jié)論是_____.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,的余切值為2,,點(diǎn)D是線段上的一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)A、B重合),以點(diǎn)D為頂點(diǎn)的正方形的另兩個(gè)頂點(diǎn)E、F都在射線上,且點(diǎn)F在點(diǎn)E的右側(cè),聯(lián)結(jié),并延長,交射線于點(diǎn)P.
(1)點(diǎn)D在運(yùn)動(dòng)時(shí),下列的線段和角中,________是始終保持不變的量(填序號(hào));
①;②;③;④;⑤;⑥;
(2)設(shè)正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關(guān)系式,并寫出定義域;
(3)如果與相似,但面積不相等,求此時(shí)正方形的邊長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com