【題目】如圖,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的點E處,折痕為PQ.過點E作EF∥AB交PQ于點F,連接BF
(1)若AP: BP=1:2,則AE的長為 .
(2)求證:四邊形BFEP為菱形;
(3)當(dāng)點E在AD邊上移動時,折痕的端點P、Q也隨之移動.若限定點P,Q分別在邊AB、BC上移動,求出點E在邊AD上移動的最大距離.
【答案】(1) cm,(2)證明見解析;(3)2cm;
【解析】
(1) 先根據(jù)AB=3cm,AP: BP=1:2,計算出AP、BP的長度,再根據(jù)勾股定理即可求得AE的長度;
(2)根據(jù)折疊的性質(zhì)得到點B與點E關(guān)于PQ對稱,進而得到PB=PE,BF=EF,∠BPF=∠EPF,根據(jù)平行的性質(zhì)再證明BP=BF=EF=EP即可得到答案;
(3) 找到E點離A最近和最遠的兩種情況,運用矩形的性質(zhì)以及勾股定理即可求出點E在邊AD上移動的最大距離;
解:(1)∵AB=3cm,
若AP: BP=1:2,則AP= ,BP=,
根據(jù)折疊的性質(zhì)得到:PE=PB=2cm,
又∵四邊形ABCD是矩形,
∴∠A=90°,
∴ ,
即:,
∴,即:,
故AE的長為:cm;
(2)∵折疊紙片使B點落在邊AD上的E處,折痕為PQ,
∴點B與點E關(guān)于PQ對稱.
∴PB=PE,BF=EF,∠BPF=∠EPF.
又∵EF∥AB,
∴∠BPF=∠EFP(兩直線平行,內(nèi)錯角相等),
∴∠EPF=∠EFP(等量替換),
∴EP=EF,
∴BP=BF=EF=EP(四邊相等的四邊形是菱形),
∴四邊形BFEP為菱形;
(3)當(dāng)點Q與點C重合時,如圖2所示,此時點E離點A最近,
∵四邊形ABCD是矩形,
∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°.
∵點B與點E關(guān)于PQ對稱,
∴CE=BC=5cm,
在Rt△CDE中,
∴AE=AD-DE=5-4=1cm,此時AE=1cm;
當(dāng)P點與A點重合時,如圖3所示,點E離點A最遠.
此時四邊形ABQE為正方形,AE=AB=3cm.
∴點E在邊AD上移動的最大距離為2cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB//EF,∠2=2∠1
(1)證明∠FEC=∠FCE;
(2)如圖2,M為AC上一點,N為FE延長線上一點,且∠FNM=∠FMN,則∠NMC與∠CFM有何數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式,能用平方差公式計算的是( 。
A.(2a+b)(2b﹣a)B.(+1)(﹣-1)
C.(2a﹣3b)(﹣2a+3b)D.(﹣a﹣2b)(﹣a+2b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要從甲、乙兩名同學(xué)中選出一名,代表班級參加射擊比賽,如圖是兩人最近10次射擊訓(xùn)練成績的折線統(tǒng)計圖.
(1)已求得甲的平均成績?yōu)?/span>8環(huán),求乙的平均成績;
(2)觀察圖形,直接指出甲,乙這10次射擊成績的方差s甲2,s乙2哪個大?
(3)如果其他班級參賽選手的射擊成績都在7環(huán)左右,本班應(yīng)該選哪位參賽更合適?為什么?如果其他班級參賽選手的射擊成績都在9環(huán)左右,本班應(yīng)該選哪位參賽更合適?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中(請補畫出必要的圖形),O為坐標(biāo)原點,直線y= -2x+4與x、y軸分別交于A、B兩點,過線段OA的中點C作x軸的垂線l,分別與直線AB交于點D,與直線y=x+n交于點P。
(1)直接寫出點A、B、C、D的坐標(biāo):A( ),B( ),C( ),D( )
(2)若△APD的面積等于1,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,點C在⊙O上,△ABC的外角平分線BD交⊙O于D,DE∥AC交CB的延長線于E.
(1)求證:DE是⊙O的切線;
(2)若∠A=30°,求證:BD=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個幾何體由大小相同的正方體搭成,從上面看到的幾何體的形的形狀狀圖如圖所示,其中小正方形中的數(shù)字表示在該位置的小正方體的個數(shù),
(1)請畫出從正面和左面看到的這個幾何體的形狀圖.
(2)若每個小正方圖的棱長都為1,則搭成的這個幾何體的體積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,點B在x軸上,且.
求點B的坐標(biāo);
求的面積;
在y軸上是否存在P,使以A、B、P三點為頂點的三角形的面積為10?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板按如圖所示的方式擺放,其中△ABC為含有45°角的三角板,直線AD是等腰直角三角板的對稱軸,且斜邊上的點D為另一塊三角板DMN的直角頂點,DM、DN分別交AB、AC于點E、F.則下列四個結(jié)論:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四邊形AEDF=BC2.其中正確結(jié)論是_____(填序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com