【題目】通過解方程(組)使問題得到解決的思維方式就是方程思想,已學(xué)過的《勾股定理》及《一次函數(shù)》都與它有密切的聯(lián)系,最近方程家族的《一元二次方程》我們也學(xué)習(xí)了它的求解方法和應(yīng)用。如圖1,矩形中,在上,且,點(diǎn)從點(diǎn)出發(fā),以1個單位每秒的速度在邊上向點(diǎn)運(yùn)動,設(shè)點(diǎn)的運(yùn)動時間為秒。
(1)的面積為,求關(guān)于的函數(shù)關(guān)系式,并求出時的值;
(2)在點(diǎn)從點(diǎn)向運(yùn)動的過程中,是否存在使的時刻?若存在,求出的值,若不存在,請說明理由;
(3)如圖2,分別是的中點(diǎn),在點(diǎn)從向運(yùn)動的過程中,線段掃過的圖形是什么形狀_________________,并直接寫出它的面積___________________________。
【答案】(1)x=8;(2)存在,x=6;(3)平行四邊形,15.
【解析】
(1),,然后依據(jù)的面積矩形的面積三個直角三角形的面積可得到與的函數(shù)關(guān)系式,然后將代入函數(shù)關(guān)系式可求得的值;
(2)先依據(jù)勾股定理求得、、的長,然后依據(jù)勾股定理的逆定理列出關(guān)于的方程,從而可求得的值;
(3)確定出點(diǎn)分別與點(diǎn)和點(diǎn)重合時,點(diǎn)、的位置,然后依據(jù)三角形的中位線定理可證明,,從而可判斷出掃過區(qū)域的形狀,然后依據(jù)平行四邊形的面積公式求解即可.
解:(1)四邊形為矩形,
,.
,
.
,,
,
整理得:.
當(dāng)時,,
解得:.
(2)存在.理由如下:
,,,,
,,.
當(dāng)時,,
,
整理得:,
配方得:,
解得:.
(3)如圖所示:
當(dāng)點(diǎn)與點(diǎn)重合時,點(diǎn)位于處,點(diǎn)位于點(diǎn)處,
為的中點(diǎn),點(diǎn)位的中點(diǎn).
當(dāng)點(diǎn)與點(diǎn)重合時,點(diǎn)位于處,點(diǎn)位于點(diǎn)處,
為的中點(diǎn),點(diǎn)位的中點(diǎn).
,,,.
,.
四邊形為平行四邊形.
掃過的區(qū)域?yàn)槠叫兴倪呅危?/span>
故答案為:平行四邊形;15.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連接BO并延長交⊙O于點(diǎn)E,連接AE,若AB=6,CD=1,則AE的長為( 。
A. 3 B. 8 C. 12 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某石化乙烯廠某車間生產(chǎn)甲、乙兩種塑料的相關(guān)信息如下表,請你解答下列問題:
出廠價 | 成本價 | 排污處理費(fèi) | |
甲種塑料 | 2100(元/噸) | 800(元/噸) | 200(元/噸) |
乙種塑料 | 2400(元/噸) | 1100(元/噸) | 100(元/噸) 另每月還需支付設(shè)備管理、維護(hù)費(fèi)20000元 |
(1)設(shè)該車間每月生產(chǎn)甲、乙兩種塑料各x噸,利潤分別為y1元和y2元,分別求出y1和y2與x的函數(shù)關(guān)系式(注:利潤=總收入-總支出);
(2)已知該車間每月生產(chǎn)甲、乙兩種塑料均不超過400噸,若某月要生產(chǎn)甲、乙兩種塑料共700噸,求該月生產(chǎn)甲、乙塑料各多少噸時,獲得的總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CD⊥AB于點(diǎn)D,則CD將△ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AB的高為16m,遠(yuǎn)處有一塔CD,小李在樓底A處測得塔頂D處的仰角為 60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點(diǎn)分別位于B、D兩點(diǎn)正下方,且A、C兩點(diǎn)在同一水平線上,求塔CD的高.(=1.73,結(jié)果保留一位小數(shù).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OA是∠EOC的平分線,∠EOD=100°.
(1)請指出∠BOC的一個補(bǔ)角;
(2)求出∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某糧庫3天內(nèi)的糧食進(jìn)出庫的噸數(shù)為:+26,-32,-15,+34,-38,-20.問:
(1)經(jīng)過這3天,庫里的糧食是增多了多少?還是減少了多少?
(2)經(jīng)過這3天,倉庫管理員發(fā)現(xiàn)庫里還存有520噸糧食,那么3天前庫里存糧多少噸?
(3)如果進(jìn)出的裝卸費(fèi)都是每噸5元,那么這3天需要多少裝卸費(fèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某市2017年企業(yè)用水量x(噸)與該月應(yīng)交的水費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)若某企業(yè)2017年10月份的水費(fèi)為620元,求該企業(yè)2017年10月份的用水量;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù) y=k x+b 與反比例函數(shù) 圖象交于點(diǎn) A (2,m) 和點(diǎn) B(n,-2).
(1) 求此一次函數(shù)解析式及m、n的值;
(2) 結(jié)合圖象求不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com