【題目】如圖所示,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點D的切線分別交AB,AC的延長線于點E,F(xiàn).
(1)求證:AF⊥EF.
(2)探究線段AF、CF、AB之間的數(shù)量關(guān)系,并證明.
【答案】(1)證明見解析;(2)AF+CF=AB.證明見解析.
【解析】
(1)連接OD,由EF是⊙O的切線,可得OD⊥EF,由∠BAC的平分線交⊙O與點D,易證得OD⊥BC,即可得BC∥EF,由AB為直徑,根據(jù)直徑所對的圓周角是直角,可得AC⊥BC,繼而證得AF⊥EF;
(2)連接BD并延長,交AF的延長線于點H,連接CD,易證得△ADH≌△ADB,△CDF≌△HDF,繼而證得AF+CF=AB.
(1)連接OD,
∴OD⊥EF,
∵AD平分∠BAC,
∴,
由垂徑定理知OD⊥BC,
又AB是直徑,
∴∠ACB=90°,即AF⊥BC,
∴AF∥OD,
∴AF⊥EF;
(2)AF+CF=AB,證明如下:
過D作DH⊥AB于H,則DH=DF,AH=AF,
∵,
∴DC=DB,
在 Rt△CFD與 Rt△BHD中,
,
∴Rt△CFD≌Rt△BHD(HL),
∴BH=CF,
∴AB=AH+HB=AF+CF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,為邊上的一動點(點不與、兩點重合).交于點,交于點.
下列條件中:①;②是的中線;③是的角平分線;④是的高,請選擇一個滿足的條件,使得四邊形為菱形,并證明;
答:我選擇________.(填序號)
在選擇的條件下,再滿足條件:________,四邊形即成為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形和點,當(dāng)點在上任一位置(如圖所示)時,易證得結(jié)論:,請你探究:當(dāng)點分別在圖、圖中的位置時,、、和又有怎樣的數(shù)量關(guān)系請你寫出對上述兩種情況的探究結(jié)論,并利用圖證明你的結(jié)論.
答:對圖的探究結(jié)論為________;
對圖的探究結(jié)論為________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=AD,BC=BE,∠ACB=100°,則∠ECD=( 。
A.20°B.30°C.40°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,.
(1)先作的平分線交邊于點,再以點為圓心,長為半徑作⊙.
(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)請你判斷(1)中與⊙的位置關(guān)系,并證明你的結(jié)論.
(3)若,,求出(1)中⊙的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:
①同一個人在相同的條件下做同一個實驗,第一天做了次,第二天做了次,對這一實驗中的同一事件來說,這兩天出現(xiàn)的頻率相等;
②投擲骰子,偶數(shù)朝上的概率是;
③如果一個袋里裝有個紅球,個白球,從中任取個,因為取出的球不是紅球,就是白球,所以取出紅球的概率是.
其中正確的有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為一座拋物線型的拱橋,AB、CD分別表示兩個不同位置的水面寬度,O為拱橋頂部,水面AB寬為10米,AB距橋頂O的高度為12.5米,水面上升2.5米到達警戒水位CD位置時,水面寬為( )米.
A. 5 B. 2 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)門市銷售兩種商品,甲種商品每件售價為300元,乙種商品每件售價為80元.新年來臨之際,該門市為促銷制定了兩種優(yōu)惠方案:
方案一:買一件甲種商品就贈送一件乙種商品;
方案二:按購買金額打八折付款.
某公司為獎勵員工,購買了甲種商品20件,乙種商品x(x≥20)件.
(1)分別寫出優(yōu)惠方案一購買費用y1(元)、優(yōu)惠方案二購買費用y2(元)與所買乙種商品x(件)之間的函數(shù)關(guān)系式;
(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請你寫出總費用w與m之間的關(guān)系式;利用w與m之間的關(guān)系式說明怎樣購買最實惠.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com