【題目】如圖,的直徑,為弦的中點(diǎn),連接并延長(zhǎng)與交于點(diǎn),過(guò)點(diǎn)的切線,交的延長(zhǎng)線于點(diǎn)

1)求證:

2)連接,若,請(qǐng)求出四邊形的面積。

【答案】(1)見(jiàn)解析;(2)18

【解析】

1)根據(jù)垂弦定理可得ODAC,根據(jù)切線的定義可得ODDE,根據(jù)平行線的性質(zhì)即可解答;

2)連接CD,根據(jù)ACDE,OAAE,可得點(diǎn)FOD的中點(diǎn),然后可得AFOCFD(SAS),所以SAFOSCFD,通過(guò)等量代換可得S四邊形ACDESODE即可解答.

解:(1)證明:∵F為弦AC的中點(diǎn),∴ODAC

DE切⊙O于點(diǎn)D,∴ODDE,∴ACDE

(2)如圖,連接CD,

ACDE,且OAAE,

FOD的中點(diǎn),即OFFD,

又∵AFCF,∠AFO=∠CFD,

AFOCFD(SAS),

SAFOSCFD,∴S四邊形ACDESODE,

RtODE中,ODOAAE6,∴OE12,

DE6

S四邊形ACDESODE×OD×DE×6×618

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑為6cm,B⊙O外一點(diǎn),OB⊙O于點(diǎn)A,AB=OA,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以π cm/s的速度在⊙O上按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到點(diǎn)A立即停止.當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為______時(shí),BP⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象相交于點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn).

1)求反比例函數(shù)的表達(dá)式;

2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個(gè)交點(diǎn)為,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)游泳館夏季推出兩種收費(fèi)方式.方式一:先購(gòu)買(mǎi)會(huì)員證,會(huì)員證200元,只限本人當(dāng)年使用,憑證游泳每次需另付費(fèi)10元:方式二:不購(gòu)買(mǎi)會(huì)員證,每次游泳需付費(fèi)20元.

1)若甲計(jì)劃今年夏季游泳的費(fèi)用為500元,則選擇哪種付費(fèi)方式游泳次數(shù)比較多?

2)若乙計(jì)劃今年夏季游泳的次數(shù)超過(guò)15次,則選擇哪種付費(fèi)方式游泳花費(fèi)比較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形的邊長(zhǎng)為6,點(diǎn),分別在,上,相交于點(diǎn),點(diǎn)的中點(diǎn),連接,則的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為的網(wǎng)格中,△的頂點(diǎn),均在格點(diǎn)上.

1的長(zhǎng)等于_____________;

2)在如圖所示的網(wǎng)格中,將△繞點(diǎn)旋轉(zhuǎn),使得點(diǎn)的對(duì)應(yīng)點(diǎn)落在邊上,得到△,請(qǐng)用無(wú)刻度的直尺,畫(huà)出△,并簡(jiǎn)要說(shuō)明這個(gè)三角形的各個(gè)頂點(diǎn)是如何找到的(不要求證明)__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,分別為、的中點(diǎn),連接,交于點(diǎn),將沿對(duì)折,得到,延長(zhǎng)延長(zhǎng)線于點(diǎn),下列4個(gè)結(jié)論:①;②;③;④;正確的結(jié)論有__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新學(xué)期復(fù)學(xué)后,學(xué)校為了保障學(xué)生的出行安全,隨機(jī)調(diào)查了部分學(xué)生的上學(xué)方式(每位學(xué)生從乘私家車(chē)、坐公交、騎車(chē)和步行4種方式中限選1項(xiàng)),根據(jù)調(diào)查數(shù)據(jù)制作了如圖所示的不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.

(1)本次學(xué)校共調(diào)查了 名學(xué)生, , ;

(2)求扇形統(tǒng)計(jì)圖中步行對(duì)應(yīng)扇形的圓心角;

(3)甲、乙兩位同學(xué)住在同一小區(qū),且都坐公交車(chē)上學(xué),有、三路公交車(chē)途徑該小區(qū)和學(xué)校,假設(shè)甲、乙兩位同學(xué)坐這三路公交車(chē)是等可能的,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求某日甲、乙兩位同學(xué)坐同一路公交車(chē)到學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,正方形與正方形有公共的頂點(diǎn),連接,,

   

①求證:

②求的值;

2)將圖1中的正方形旋轉(zhuǎn)到圖2的位置,當(dāng),,在一條直線上,若,求正方形的邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案