【題目】已知正方形的邊長(zhǎng)為6,點(diǎn),分別在,上,相交于點(diǎn),點(diǎn)的中點(diǎn),連接,則的長(zhǎng)為______.

【答案】

【解析】

根據(jù)正方形的四條邊都相等可得ABAD,每一個(gè)角都是直角可得∠BAE=∠D90°,然后利用邊角邊證明ABE≌△DAF得∠ABE=∠DAF,進(jìn)一步得∠AGE=∠BGF90°,從而知GHBF,利用勾股定理求出BF的長(zhǎng)即可得出答案.

解:∵四邊形ABCD為正方形,

∴∠BAE=∠D90°,ABAD

ABEDAF中,

ABAD,∠BAE=∠D, AEDF,

∴△ABE≌△DAFSAS),

∴∠ABE=∠DAF,

∵∠ABE+∠BEA90°,

∴∠DAF+∠BEA90°,

∴∠AGE=∠BGF90°,

∵點(diǎn)HBF的中點(diǎn),

GHBF,

BC6,CFCDDF624

BF,

GH,

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】建筑工人用邊長(zhǎng)相等的正六邊形、正方形、正三角形三種瓷磚鋪設(shè)地面,正方形瓷磚分黑白兩種顏色,密鋪成圖(1)的形狀.用水泥澆筑前,為方便施工,工人要先把瓷磚按圖1方式先擺放好,一工人擺放時(shí),無(wú)意間將3塊黑色正方形瓷磚上翻到一個(gè)正六邊形的上面,其中三個(gè)正方形的一條邊分別和正六邊形的三條邊重合,如圖(2)所示.按圖(2)方式給各點(diǎn)作上標(biāo)注,若正方形的邊長(zhǎng),則_____(不考慮瓷磚的厚度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P的坐標(biāo)是a,b,從-2,-1,0,1,2這五個(gè)數(shù)中任取一個(gè)數(shù)作為a的值,再?gòu)挠嘞碌乃膫(gè)數(shù)中任取一個(gè)數(shù)作為b的值,則點(diǎn)Pa,b在平面直角坐標(biāo)系中第二象限內(nèi)的概率是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是實(shí)驗(yàn)室中的一種擺動(dòng)裝置,在地面上,支架是底邊為的等腰直角三角形,擺動(dòng)臂長(zhǎng)可繞點(diǎn)旋轉(zhuǎn),擺動(dòng)臂可繞點(diǎn)旋轉(zhuǎn),.

1)在旋轉(zhuǎn)過(guò)程中:

①當(dāng)三點(diǎn)在同一直線(xiàn)上時(shí),求的長(zhǎng);

②當(dāng)三點(diǎn)在同一直角三角形的頂點(diǎn)時(shí),求的長(zhǎng).

2)若擺動(dòng)臂順時(shí)針旋轉(zhuǎn),點(diǎn)的位置由外的點(diǎn)轉(zhuǎn)到其內(nèi)的點(diǎn)處,連結(jié),如圖2,此時(shí),,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為實(shí)現(xiàn)2020年全面脫貧的目標(biāo),我國(guó)實(shí)施“精準(zhǔn)扶貧”戰(zhàn)略,從而使貧困戶(hù)的生活條件得到改善,生活質(zhì)量明顯提高.為了切實(shí)關(guān)注、關(guān)愛(ài)貧困家庭學(xué)生,某校對(duì)全校各班貧困家庭學(xué)生的人數(shù)情況進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)發(fā)現(xiàn)班上貧困家庭學(xué)生人數(shù)分別有2名,3名,4名,5名,6名,共五種情況.并將其制成了如下兩幅不完整的統(tǒng)計(jì)圖:

請(qǐng)回答下列問(wèn)題:

1)求該校一共有班級(jí)________個(gè);在扇形統(tǒng)計(jì)圖中,貧困家庭學(xué)生人數(shù)有5名的班級(jí)所對(duì)應(yīng)扇形圓心角為________°;

2)將條形圖補(bǔ)充完整;

3)甲、乙、丙是貧困生中的三名學(xué)生,學(xué)校決定從這三名學(xué)生中隨機(jī)抽取兩名代表到市里進(jìn)行發(fā)言,用列表法或畫(huà)樹(shù)狀圖法,求同時(shí)抽到甲,乙兩名學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,為弦的中點(diǎn),連接并延長(zhǎng)與交于點(diǎn),過(guò)點(diǎn)的切線(xiàn),交的延長(zhǎng)線(xiàn)于點(diǎn)

1)求證:;

2)連接,若,請(qǐng)求出四邊形的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某劇院舉行專(zhuān)場(chǎng)音樂(lè)會(huì),成人票每張20元,學(xué)生票每張5. 暑假期間,為了豐富廣大師生的業(yè)余文化生活,影劇院制定了兩種優(yōu)惠方案,方案一:購(gòu)買(mǎi)一張成人票贈(zèng)送一張學(xué)生票;方案二:按總價(jià)的90%付款. 某校有4名老師帶隊(duì),與若干名(不少于4人)學(xué)生一起聽(tīng)音樂(lè)會(huì).設(shè)學(xué)生人數(shù)為人,為整數(shù))

1)根據(jù)題意填表:

2)設(shè)方案一付款總金額為元,方案二付款總金額為元,分別求,關(guān)于的函數(shù)解析式;

3)根據(jù)題意填空:

①若用兩種方案購(gòu)買(mǎi)音樂(lè)會(huì)的花費(fèi)相同,則聽(tīng)音樂(lè)會(huì)的學(xué)生有 人;

②若有60名學(xué)生聽(tīng)音樂(lè)會(huì),則用方案 購(gòu)買(mǎi)音樂(lè)會(huì)票的花費(fèi)少;

③若用一種方案購(gòu)買(mǎi)音樂(lè)會(huì)票共花費(fèi)了元,則用方案 購(gòu)買(mǎi)音樂(lè)會(huì)票,使聽(tīng)音樂(lè)的學(xué)生人數(shù)多.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的弦,點(diǎn)C是弧AB的中點(diǎn),D是弦AB上一動(dòng)點(diǎn),且不與A、B重合,CD的延長(zhǎng)線(xiàn)交于⊙O點(diǎn)E,連接AE、BE,過(guò)點(diǎn)AAFBC,垂足為F,∠ABC30°

1)求證:AF是⊙O的切線(xiàn);

2)若BC6,CD3,則DE的長(zhǎng)為   ;

3)當(dāng)點(diǎn)D在弦AB上運(yùn)動(dòng)時(shí),的值是否發(fā)生變化?如果變化,請(qǐng)寫(xiě)出其變化范圍;如果不變,請(qǐng)求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OAA1的直角邊OAx軸上,點(diǎn)A1在第一象限,且OA=1,以點(diǎn)A1為直角頂點(diǎn),OA1為一直角邊作等腰直角三角形OA1A2,再以點(diǎn)A2為直角頂點(diǎn),OA2為直角邊作等腰直角三角形OA2A3依此規(guī)律,則點(diǎn)A2020的坐標(biāo)是_________

查看答案和解析>>

同步練習(xí)冊(cè)答案