【題目】如圖,過(guò)點(diǎn)軸的垂線,交直線于點(diǎn);點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱;過(guò)點(diǎn)軸的垂線,交直線于點(diǎn);點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱;過(guò)點(diǎn)軸的垂線,交直線于點(diǎn),按此規(guī)律作下去,則點(diǎn)的坐標(biāo)為________

【答案】

【解析】

先根據(jù)題意求出A2點(diǎn)的坐標(biāo),再根據(jù)A2點(diǎn)的坐標(biāo)求出B2的坐標(biāo),以此類推總結(jié)規(guī)律便可求出點(diǎn)Bn的坐標(biāo),從而可得的坐標(biāo).

解:∵點(diǎn)A1坐標(biāo)為(10),
OA1=1,
∵過(guò)點(diǎn)A1x軸的垂線交直線于點(diǎn)B1,可知B1點(diǎn)的坐標(biāo)為(1,2),
∵點(diǎn)A2與點(diǎn)O關(guān)于直線A1B1對(duì)稱,
OA1=A1A2=1
OA2=1+1=2,
∴點(diǎn)A2的坐標(biāo)為(20),B2的坐標(biāo)為(24),
∵點(diǎn)A3與點(diǎn)O關(guān)于直線A2B2對(duì)稱,故點(diǎn)A3的坐標(biāo)為(4,0),B3的坐標(biāo)為(4,8),
依此類推便可求出點(diǎn)An的坐標(biāo)為(2n-1,0),點(diǎn)Bn的坐標(biāo)為(2n-1,2n),

A10的坐標(biāo)為.
故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“普洱茶”是云南有名的特產(chǎn),某網(wǎng)店專門銷售某種品牌的普洱茶,成本為30/盒,每天銷售()與銷售單價(jià)()之間存在一次函數(shù)關(guān)系,如圖所示.

(1)之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天該種普洱茶的銷售量不低于240盒,該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出500元給扶貧基金會(huì),當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的凈利潤(rùn)最大,最大凈利潤(rùn)是多少?(:凈利潤(rùn)=總利潤(rùn)-捐款)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=﹣2x+4分別交x軸、y軸于點(diǎn)A、B.拋物線過(guò)AB兩點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)PPCx軸于點(diǎn)C,交拋物線于點(diǎn)D

1)如圖1,設(shè)拋物線頂點(diǎn)為M,且M的坐標(biāo)是(),對(duì)稱軸交AB于點(diǎn)N

求拋物線的解析式;

是否存在點(diǎn)P,使四邊形MNPD為菱形?并說(shuō)明理由;

2)是否存在這樣的點(diǎn)D,使得四邊形BOAD的面積最大?若存在,求出此時(shí)點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣xx軸于點(diǎn)A,點(diǎn)B6,n)為拋物線上一點(diǎn).

1)求mn之間的函數(shù)關(guān)系;

2)如圖,點(diǎn)C(﹣n,0)在x軸上,且∠BAC2ACB,求m的值;

3)在(2)的條件下,P為直線BC上方拋物線上一點(diǎn),過(guò)點(diǎn)PPDABx軸于點(diǎn)D,DEBCOP于點(diǎn)E,,求點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸交于點(diǎn),軸交于點(diǎn),拋物線經(jīng)過(guò),兩點(diǎn),與軸的另一交點(diǎn)為

1)求拋物線的解析式;

2為拋物線上一點(diǎn),直線軸交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);

3)在直線下方的拋物線上是否存在點(diǎn),使得,如果存在這樣的點(diǎn),請(qǐng)求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形的對(duì)角線,相交于點(diǎn),,,且

1)求證:四邊形是菱形;

2)求經(jīng)過(guò)點(diǎn)的雙曲線對(duì)應(yīng)的函數(shù)解析式;

3)設(shè)經(jīng)過(guò)點(diǎn)的雙曲線與直線的另一交點(diǎn)為,過(guò)點(diǎn)軸的平行線,交經(jīng)過(guò)點(diǎn)的雙曲線于點(diǎn),交軸于點(diǎn),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在蘭州市開(kāi)展的體育、藝術(shù)2+1”活動(dòng)中,某校根據(jù)實(shí)際情況,決定主要開(kāi)設(shè)A:乒

乓球,B:籃球,C:跑步,D:跳繩這四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生喜歡哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)你結(jié)合圖中信息解答下列問(wèn)題:

1)樣本中喜歡B項(xiàng)目的人數(shù)百分比是    ,其所在扇形統(tǒng)計(jì)圖中的圓心角的度數(shù)是    ;

2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)已知該校有1000人,根據(jù)樣本估計(jì)全校喜歡乒乓球的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的點(diǎn)A,C在⊙O上,⊙OAB相交于點(diǎn)D,連接CD,∠A30°,DC

1)求圓心O到弦DC的距離;

2)若∠ACB+ADC180°,求證:BC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩建筑物的水平距離,點(diǎn)測(cè)得點(diǎn)的俯角,測(cè)得點(diǎn)的俯角,求這兩個(gè)建筑物的高度.(結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案